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TL;DR

e ML models are subject to OOD points after deployment.

e Hard to anticipate all kinds of OOD data and prepare for that.

ID :Positive
_ _ _ OOD : Negative
e Prior works, construct OOD scoring function

and set threshold on the scores to achieve 95% TPR
 \We observe, this leads to high FPR.

e \We propose to adapt the threshold to maintain FPR below 5% at all times.

e Use any-time valid confidence sequences to guarantee this.

o Validate empirically. g
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Outline

Motivation for OOD detection and FPR control
Our framework for human-in-the-loop OOD detection

Theoretical guarantees on controlling FPR

Works well in practice — experiments on synthetic and real scoring functions



Supervised machine learning (ML)
Training to Deployment

e Supervised ML models are trained on labeled datasets

i: i‘ JE label: cat

label: dog

e Validation / Model selection on data from same distribution.

 Deploy the model after training and model selection.

* (Generalization to unseen data is guaranteed whenitis | ..
coming iid from the same distribution as training data

Dataset Training



Expectation: Test data matches training data

Usually assume that the test data will come
from the same distribution as ID data.

Dog

Correct Prediction



Reality: (i) Test data might not match training data

The test data may have samples from different distributions.

D;,, : distribution of ID data

Expected Test Data

Real Test Data

D, g : distribution of OOD data
v € (0, 1) : 00D fraction




Reality : (i) Model makes mistakes on OOD points

Reality

1. May get OOD data at test time.
2. Model can misclassify it as one of the ID
classes with high confidence.

Trust me bro!
It's a cat

Cat

Incorrect Prediction
with High Confidence

‘

OOD Input

Nguyen et. al, “Deep neural networks are easily fooled: High confidence predictions for unrecognizable
images “, 2017



A more safety critical example

Accurate Predictions
on ID data

ML model to classify brain scans with
Alzheimer vs Normal scans

Since it is trained on ID data, assume it is highly accurate on it.



A more safety critical example

ID :Positive
OOD : Negative

Accurate Predictions
on ID data

Likely to make
mistakes on OOD data

It would be catastrophic to misclassify a scan of other disease
(OOD) as having Alzheimer or as a Normal scan (ID).

OOD misclassified as ID is a False Positive.
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Reality of ML model deployment

ML models could be subject to OOD points

z "R (1 =) Din + v Dood
v € (0,1) : OOD fraction

Cat

Incorrect Prediction
with High Confidence

ID :Positive

Accurate Predictions
on ID data

Likely to make
mistakes on OOD data

10



What should we expect on OOD inputs?

| am not sure, may be it is OOD
and defer it to human.
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OOD detection with post-hoc methods

» Scoring function: ¢ : X = [Anin, Amax] C R

* Select Threshold )\ to achieve 95% TPR.
Declare “in-distribution” (ID) if g(x) > A
Declare “out-of-distribution” if g(x) < A

Usual Softmax Confidence Scores
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Yang et. al, “Generalized OOD detection: A Survey”, 2021
Yang et. al, “OpenOOD: Benchmarking Generalized Out-of+Distribution Detection”, 2022



OOD detection with post-hoc methods

ML Model Inference

ID: Norlrgrlglinaggaﬁlsheimer Inference Inference OO0OD Detection ID Output
_____________ Output |=> from ML
Input ——————p2 O\ g(x) : ID model
S O—>C/, ) 00D ,
——p ® I\ (> NoML
Features f

OOD Inference

OOD : Brain scans for other

diseases
_____________  Scoring function: g : X = [Amin,Amax] C R
z "X (1 =7) Din +7 Dood * Select Threshold )\ to achieve 95% TPR.
D;., : distribution of ID data
Dood : distribution of OOD data Declare “in-distribution” (ID) if g(fE) > A

v € (0,1) : OOD fraction
TPR()A) := E,wp.. [1{g(z) > A\}]

Yang et. al, “Generalized OOD detection: A Survey”, 2021
Yang et. al, “OpenOQOD: Benchmarking Generalized Out—of1—3Distribution Detection”, 2022

Declare “out-of-distribution” if g(z) < A



False Positive and True Positive Rates

Scoring function ¢ : X — [Amin, Amax] C R Threshold: \

e False Positive Rate

FPR(A) := Epup, . [1{g(z) > A}] D, oq : distribution of OOD data

Fraction of OOD data that falsely get considered as “ID”

* True Positive Rate

TPR()\) — ExNDin [1{9(1.) > )\}] D;,, : distribution of ID data

Fraction of ID data that correctly get considered as “ID”
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Safe use in critical applications require guarantees
on false positives

ML Model Inference

ID: Norlrorlglinagglaﬁr\]lgheimer Inference Inference OOD Detection ID Output
_____________ Output :> from ML
i
> O\ g(x) P model
07@) OO0D 0
: : Features O : 4 oMt
. inference
I . OOD
: OOD : Brain scans for other :
| diseases |
It would be catastrophic to misclassify a scan of other disease
z K (1= 5) Din + 7 Dood (OOD) as having Alzheimer or as a Normal scan (ID).
D;,,  : distribution of ID data
Dooq : distribution of OOD data Pr(declare as chDn |£B iS “OOD” ) < o

v € (0,1) : 00D fraction

TPR()) i= E,en,, [L{g(x) > A} FPR(A) := Epop. ., [1{g(z) > A}] < «



Threshold selection and FPR

* Usually, threshold is picked such that 95% of |ID data is correctly identified as ID, that
s TPR is 95%. But the FPR at this point can very large
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File Edit View Data
Q & @B~ 100% ~ ®© View only
v Method
A B
Method CIFAR-100
OpenMax 67.62 §85.03 / 83.69
MSP 62.01 §87.11 / 85.92
ODIN 59.09 §77.68 / 73.24
MDS 81.63 §66.30/ 63.74
Gram 100/ B9.76 / 59.04
EBO 51.46 §86.15/83.21
GradNorm 82.00 §54.80/52.39
ReAct 53.72 §86.35/83.15
MLS 52.16 §86.10/ 83.20
KLM 61.99 §78.71/72.88
VIM 55.92 §87.15/ 86.34
KNN 52.49 §89.55/89.78
DICE 65.98 §80.25/79.23

Tools

Help

TIN

86.57 / 85.93
86.62 / 83.07
77.33/70.07
66.79 / 63.28
58.11/54.72
88.58 / 86.37
54.75/ 49.54
88.90/ 86.53
86.11 /80.79
79.10/70.73
88.90 / 88.63
91.41/92.38
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87.36 / 84.79
54.78 / 50.97
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MNIST

57.79 §90.12 / 68.66
58.59 §89.91/66.95
36.23 §90.91/64.74
0.00 /§99.52 / 99.24
76.04 §77.59 /43.97
44.50 §90.59/63.28
77.27 §59.84 / 20.83
50.94 §88.34 / 50.88
45.23 §90.48 / 63.22
61.49 §82.36 / 40.65
63.63 §87.46 / 60.66
50.08 §91.63/77.11
51.26 §89.65/ 66.27

SVHN

® Share

44 .94 /§88.39 / 66.29
82.38 /j48.96 / 22.78
49.23 /§89.50 / 75.36
44.63 /}88.45 / 66.33
50.77 /§85.95/ 70.01
97.22 / 93.76
95.13 /92.31
67.78 /§86.43 / 73.19

Texture

83.15/
88.72/
80.70/
95.42/
57.72 1
86.85 /
48.49 /
88.18 /
86.86 /
83.28 /
96.06 /
92.77 1
80.14 /
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Recap: Main Challenges

ML models could be subject to OOD points

They can misclassify OOD points as an ID class with high confidence

We do not have all type of OOD data during training / development
O |t is observed after deployment
O [t could keep changing over time

Safety critical applications demand strict control over False Positives i.e.
misclassifying OOD as ID.
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Recap: Main Challenges

Focus of prior works

e ML models could be subject to OOD points

e They can misclassify OOD points as an ID class with high confidence

Our work’s focus

e \We do not have all type of OOD data during training / development
o |t is observed after deployment
o |t could keep changing over time.

e Safety critical applications demand strict control over False Positives i.e.
misclassifying OOD as ID.
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Our Solution

 Framework for OOD detection with false positive rate control with human-in-the-loop
* This framework can work with any scoring functions g

* Theoretical guarantees for FPR control for all time when OOD is not shifting

 Window based approach when OQOD is shifting

19



Human-in-the-loop OOD Detection

-~

IN Distribution Data Inference

ML Model Inference

—>

Normal and Alzheimer
brain scans

Features

Brain scans for other

\_ diseases Y,

\_

Output [

~

OOD Detection ID Prediction
O\ . ID é_
O7@ 2' OOD Prediction Ground Truth O
: —
O % A\h

?

Update Threshold
A, =min{A : FPR(4) < a}

ID / OOD Ground
Truth Label

S

e Goal: Control FPR and maximize TPR

e Maximize TPR = minimize threshold

20

e True Positive Rate:

TPR()) := Epup. [1{g(z) > \}]



ldeal Threshold selection

FPR>a | FPR <

At = arg mgn A

0.3

s.t. FPR(\) < a

0.25 -

At = arg min A v
A

B0.15-

S Epnpeq [Hg(2) > A} < a

0.1

)\* p— arg m}%n )\ 0.05 -
St ExNDood [l{g(x) > )\}] S 8 | | SCOTes

FPR(\*) =a «— CDFp_ . (A*)=1—«
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Updating threshold in each round

ldea 1: Using empirical estimate of FPR
FPR>a | FPR < @

0.3

At = arg m)%n A

0.25 -

s.t. FPR(\ 1) < a

T Sots.

Estimate of FPR at all \ at time't

0.05 -

Not good enough to provide guarantee on A TN
FPR since empirical estimate can ' '
sometimes underestimate the true FPR FPR(A\*) =a «—— CDFp_ ., (\*) =1 -«

22



At

= arg min A\
A

st. FPR(\ 1) +(¢,6) < a

!

Time-varying confidence interval that is
valid for all time and all \

Guaranteed to approach optimal
lambda from the right, so the true FPR

IS always guaranteed to be below the
required rate

Updating threshold in each round

ldea 2: Empirical estimate with confidence
PR > FPR < &

0.3

0.25
0.2
8015
0.1

0.05 -

SCores

FPR(A\*) = a «—— CDFp__.(A\*) =1—«
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Setting threshold on the go

' FPR < (¢
In the beginning, the threshold is set at A,ax ._>
" ....d. “ID”
Ateachtimet: x; ~ (1 =) Din + v Dood
Amin [ AmaX
» Compute the score for the input:  s; = g(x¢) At—1

e If s < At—1, then predict OOD and send to human expert, get back true label

e If sy > A¢+—1, then predict ID and query human expert for true label with probability p

» Update threshold: )\; := arg min s.t. P{P?{()\,t) +Y(t,0) <

_— T

Estimate of FPR at all \ at time t Time-varying confidence interval that
is valid for all time and all )\
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Estimating FPR at all thresholds

' FPR <
| Human.expert always “«00D” ﬁ Importance Sampling
)\t . — arg 111111 )\ sees this I “ID”
)\ ]
o Send to human expert 1 Hyman Expert sees this with prob p
S.1. ]?]_:)f{(A7 t) -+ ¢(t, 5) S 87 Amin A\ 0 AmaX
t—1

* Recall that human expert always sees a point that is declared OOD

 We also ask for human expert to look at ID points with prob p

— Séo) ‘= {SY))a e 735320)} “Score” S := g(x)
ﬂ FPR(A, t)| = FPR(A\, t) Unbiased estimate '
. set of scores for these ood points that are

confirmed by human expert.

l(s(o) > ), ifs{? < Ay
Zu(A) 1= p 1(sw ) > A), W.p. pif s > Au_s
0, W.D. l—plfs()>5\u_1

Nt(o) : Number of OOD points that are confirmed as
OOD from human expert
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Valid Time-varying Confidence Intervals

e |aw of iterated logarithms (LIL) based bounds for any time valid

e DKW-style bounds for all thresholds — but we do not have independent samples

3 s 3 CtN t( ? 2 ‘ Amax o Amin ‘
W(t, o) =\ o) 2 log 10g(—> + log| ———

N/ 2 0 U
N(Oap)
ctzl—ﬁtl% 5’5:]\?(0)
Human expert always p t
sees this ' FPR < (¢ p : sampling probability when declared “ID”
“O0D” ﬁ Importance Sampling
' «D” N t<0) : Number of OOD points that are confirmed as
Send to human expert 1 Hyman Expert sees this with prob p OOD from human expert
Armin A Amax Nt(O’p>: Number of points that are importance

sampled to get human feedback even when
they are declared “ID” by the system

L/ :discretization
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lllustration of the confidence interval

40) 1
\ - FPR

. . i 50 \\ - == FPR Upper Bound

e In the beginning, the threshold is set at A, .« 0{ N - FPR Lower Bound
20 1
e For first few rounds, the confidence intervals § 20-
are too wide for a feasible A\; < Apax tO 2 15
emerge 10 -
5_
0_

16 20 24 28 32 36 40
Score

(a) No feasible solution, in the beginning
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lllustration of the confidence interval

* In the beginning, the threshold is set at A, .« — FPR

- == FPR Upper Bound

. . . 301 ~ === FPR Lower Bound
 For first few rounds, the confidence intervals '

are too wide for a feasible Ay < Apax 10 n
emerge %
e Recall that by construction, Ay > A\* a

e After a while, the confidence intervals get small
enough to get a feasible \: < Anax to emerge

(b) Feasible solution, after sometime
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lllustration of the confidence interval

In the beginning, the threshold is set at A«

- KPR
- == FPR Upper Bound

For first few rounds, the confidence intervals
301 @ m===- FPR Lower Bound

are too wide for a feasible \; < A« tO
emerge

 Recall that by construction, A; > \* b;f 20
~ 151

After a while, the confidence intervals get small 10-
enough to get a feasible \; < Anax t0 emerge 5
-

As time progresses, the confidence intervals _5

continue to shrink and the threshold gets
closer and closer to the optimal

(c) Near optimal solution, eventually

29



Theoretical Guarantees

. . . , A¢ := arg min A\
Under mild conditions, we can provide following A
guarantees for our procedure with probability 1 —, st. FPR(A,t) +1(t,6) < o

 FPR is controlled at all times: for all t, FPR()\;) < «

: - 1 1 1 1 1 AN
e Time to reach feasibility: forallt > 1r:= > log (— log (—)) - — log (_>
v a 0 a Y 0) .

P{PT{()\t) + @D(t,(S) S @ and At < Amax

SSSSS

 Time to reach eta-optimality: forallt > T, ., := 71772 log (1 log (é)) | 712 log <1>

— 7]
and FPR (Ar,,..) € [oz — 5 77} . FPR(M\*) — FPR(\;) < 1 . I

(c) Near optimal solution, eventually

30



Empirical Evaluation

We evaluate our method to verify the following,

Stationary Setting: Distributions do not change.
C1. Compared to non-adaptive baselines, our approach achieves lower FPR while maximizing the TPR.

C2. In the stationary setting, our method satisfies the FPR constraint at all times and produces high TPR.

C3. The proposed framework is compatible with any OOD scoring functions.

Non-stationary Setting: Distribution(s) shift at some time.

C4. Our method continues to work with a simple adaption using window based approach

31
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Simulations : Stationary Setting (C1, C2)

* |D scores: Gaussian ;1 = 5.5, 0 =4 « OQD scores: Gaussian 4 = -6, o =4

y=20%
. —m— y=1% Y=5% —— y=20%
—*— FPR-5% No-UCB  —-— TPR-95% LIL (Our) Hoeffding
y=2.5% —x— y=10% —*~ FPR-5%
FPR(% TPR(% % %
A . 6 FPR(%) o5 TPR(%)
10- 95 T — — — — — — — — — — — 5__._._* ....... R S — S R — A= 90 __._--* _______ e e ]

1 _,——r___‘ X—= o A -
901 4- R 85 1 x//_ . v
s o - g ko s e / ) -
6 i - = o 4
K= — R K = e = s e = 31 80 - v -_,_,,Jr—.—’

| 85 -
- 2' 4 .,-'—'—"'/ 75'
2" 80 - /,,
1- 70 - A
01 ' Jff (
' ' 75 - ' O] - |

20k 50k 80k 110k 140k 20k 50k 80k 110k 140k 20k 50k 80k 110k 140k 20k 50k 80k 110k 140k
time (t) time (¢) time (t) time (t)
* Fixed threshold (non-adaptive) methods have high FPR.  (Convergence is faster with higher OOD fraction.
* Not using UCB leads to FPR violation. « It maintains FPR below 5% for all values of 7Y

« With LIL, Hoeffding UCB the FPR constraint is maintained
and it converges to optimal TPR over time.
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Simulations: Non-stationary Setting (C4)

ID scores: Gaussian (1 = 5.5, 0 =4 e OOD scores: Gaussian 1t = -6, o = 4 (till t=50k)
v =20% e OOD scores: Gaussian @t = -5, o = 4 (after t=50k)
Only use most recent N, (window size) samples to compute FPR and confidence intervals.
—*- FPR-5% No-UCB ——- TPR-95% LIL (Our)
_____ e — TR e —— R e —— )
151 : 95 b 151 : 95 b 151 : 95 b
10____._._i ol 10____._._i N 10________i ool
| g |
b | ESer—ge g 851 D G, b oo 5__*___*___:_?_1___* ____ W B . SR SURTY o B L 0. l*_____ﬁ____*‘ _____ 851 WD W
80 1 80 - 80 -
0 01 0
20k 60Kk _10'0|?)14'0|< 180k ° 20k 60k _10'0|?)14'0|< 180k 20k 60Kk .10'O|?)14'0k 180k > 20k 60k _10'0|?)14'0|< 180k 20k 60Kk _10'0|?)14'0|< 180k > 20k 60k .10'0|?)14'0|< 180k
(a) Distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

e Qur method violates the FPR constraint for a short time and then comes back.
 Non-adaptive methods keep using the initial threshold and incur higher FPR.

 Method without UCB does adapt but takes longer time and has higher variance due to window size.
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Simulations: Window Size Trade-off

* |D scores: Gaussian p = 5.5, 0 =4

y=20%

e OOD scores: Gaussian u = -6,

e OOD scores: Gaussian u = -5,

o = 4 (till t=50k)
o = 4 (after t=50k)

Only use most recent N, (window size) samples to compute FPR and confidence intervals.

1 3 e Time to detect change
1.1 —_
-1 ——
= 0.9; L -
) —
e S
= 0.7 —— X
1
051
0.3 - - | ;
5k 10k 15k No window

Window size (N,)

* Shorter window leads to faster change
detection but limits optimality.

* With longer window we can reach
closer to optimal threshold but it will
take long time.
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—a— No window — N, =5k

FPR(%)
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e/ SUN iy . S S R ——— -
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® o © -.r/'r‘_

| JF, —

4

L

20k 60k 100k 140k 180k
time (t)

—e— N, =10k —* FPR-5%

90 1

80 1

701

60 1

TPR(%)
_._*._..Tr_’-
'*_.. R S G —— - -
& 00—
f" n—a—8
fl
7
. 11— . .
20k 60k 100k 140k 180k

time (t)

 Conservative approach: restart after detecting change.



Can work with any scoring functions (C3)

e |D: CIFAR-10
y=20%

s gt o
- FPR-5%
FPR(%) . TPR(%) |,
40.0 100
37.5 | 1 gl
6
________________________ 80 [ Ty v, i S o
4
70
2
0 T T T T T 60 T T T T T
20k 50k 80k 110k 140k 20k 50k 80k 110k 140k
time(t) time(t)
FPR(%) TPR(%)
29
28 [ e e 100_ ............................
27 L 1L o9l
8 80
N p NSV ST SESUESE. > JREV R ™ A e e— Y
6 70
F ______________ Ve = S C— .+
4 60
50
2
40
O T T T T T T T T T T
20k 50k 80k 110k 140k 20k 50k 80k 110k 140k
time(t) time(t)

(a) No distribution shift, no window.

45
40

12.5

10.0

7.5

5.0

2.5

0.0

50

25 =

12.5
10.0
7.5
5.0
2.5
0.0

OOD1 : MNIST, SVHN, and Texture
OO0OD?2 : TinylmageNet, Places365, CIFAR-100
TPR-95%

. TPR(%) |

20k 50k

80k 110k 140K
time(t)

20k 50K

80k 110k 140K
time(t)

100

= 90=—=

80 A=y

70

100

- 90 -

80

70

60

50

20K

50k 80k 110k 140k

[ 12.5]

time(t)
TPR(%)
_______ )
i
|
|
O S R PV
20k 50k 80k 110k 140k
time(t)

(b) Distribution shift, 5k window.

LIL (Our)

(till t=50k)
(after t=50Kk)

KNN based scoring
function Sun et. al. 2022

T VIM (Virtual-logit Match)

scoring function Wang et.
al. 2022

0 0
45 - 100 TPR(%)
40 | ____________________________
=TT T ‘ = 90=
10.0 80 Ars=get= ;
7.5 l :
50 F _________________ O T o C s 70 |L -
2.5
00 T T T T T T T T T T
20k 50k 80k 110k 140k 20k 50k 80k 110k 140k
time(t) time(t)
FPR(%) TPR(%)
50 R, KA.£ S . ———
! 100
I e & s — — — T G S G S S— S— S— S— —
25="—r—r—= ’ 4 90%
10.0 80
=gk
7.5 l 70 |
50 Fimeamge—h— — — —k—@ etk =y |
60 |
2.5 b — - K~ sgtok e
OO T T T T T 50 T T T T T
20k 50k 80k 110k 140k 20k 50k 80k 110k 140k
time(t) time(t)

(c) Distribution shift, 10k window.

e Methods work as expected from simulations.

e The best TPR achievable depends on scoring function and our method approaches it while
maintaining FPR guarantee at all times.
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Summary

Framework for human-in-the-loop OOD detection with false positive rate control

This framework can work with any scoring function

Guarantees for FPR control for all time when OQD is not shifting

Windowed approach when OQOD is shifting

istributi OOD Detection ID Prediction
IN Distribut Dat
Sl ML Model Inference ) '"ference
D G gr &) Output
A %&, |:> ' > O\ . I
T ' N . \ /A @ ooby
h a n k O u ormal qnd Alzheimer %Y, : O ﬁ_ OOD Prediction Ground Truth
m brain scans > O/ : /lt ———
- ) | ' b
. W Features
Q u eSt I O n S Brain scans for other \ )
\ diseases ) Update Threshold
ﬁt = mm{ﬁ . FPR()),) S a} ID / OOD Ground
K Truth Label

_
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