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We need labeled data and often a lot of it!
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Unsupervised 
Pre-training

Foundation Model

Web scale  
Unlabeled data

Supervised  
Fine-tuning

Labeled data

Fine-tuning Foundation models 
or Aligning LLMs

Diagnosing a novel disease using 
brain scans

Normal Sick Sick Normal

Supervised 
Training

Labeled data



 Data Labeling costs a lot of time and money
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Takes a lot of time and money 
to get labels.

Took multiple years and a lot of human effort

14M Images, 
20K Classes.

Deng et. Al. 2009

Crowdsourcing is widely used 
to get labels

and many others… 

Wisdom of Crowd



How do we get accurately labeled data, while spending less 
time and money?



Human-labeled 
Auto-labeled 

Labeled DataUnlabeled Data

Auto-labeling 
System

Automatically label datasets with minimal human feedback  

Get labels for “minimal” points from human

Train a model on these labeled points and 

Auto-label using the model 

4



Auto-Labeling Errors and Their Impact
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Labeled DataUnlabeled Data

Auto-labeling 
System

Human-labeled 
Auto-labeled 

https://paperswithcode.com/sota/image-classification-on-imagenet


Auto-Labeling Errors and Their Impact
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Labeled DataUnlabeled Data

Auto-labeling 
System

1. The output dataset may have labeling errors

2. The impact of errors in datasets is more severe

Unknown  
True Decision Boundary

a) Multiple downstream applications
b) Longer shelf-life than models. 

Human-labeled 
Auto-labeled 
Labeling mistake

https://paperswithcode.com/sota/image-classification-on-imagenet


Auto-labeling systems are widely used
Auto-labeling Platforms

Auto-labeling is heavily used commercially. 

Even in high risk applications

health care, telecom, recruiting…

So we need to understand them.
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Despite wide adoption, our understanding of auto-labeling 
systems is limited!



Despite wide adoption, our understanding of auto-labeling 
systems is limited!

To address this gap we develop a theoretical understanding of 
auto-labeling systems.



Auto-labeling systems are widely used
Auto-labeling Platforms

Auto-labeling is heavily used commercially. 

Even in high risk applications

health care, telecom, recruiting…

So we need to understand them.

Study a w/f inspired 
from it.
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Quality and QuanPty of Auto-labeled Data
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N Number of  
unlabeled points

Auto-labeled 
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A Set of auto-labeled points
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Na Number of auto-labeled points Number of labeling mistakes

Unknown  
True Decision Boundary

Auto-labeled 
Labeling mistake

Auto-labeling Coverage
QuanRty
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P̂ =
Na

N
Good Stuff 

maximize this

Quality
Auto-labeling Error

Bad Stuff 
minimize this



Threshold-based Auto-labeling Workflow(TBAL)

8

Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0

Find auto-labeling region, 
where the model can be trusted 

2 Auto-label points in  
the identified region

3

Remove points in auto-labeling region 

Unlabeled Data Validation Data

4   Get more human-labeled data for 
training and go to step

5

1

Unlabeled Data
i.i.d from space

Auto-labeling 
error tolerance

Input

Labeled Data

Output

1
Learn a model w using training set 

Empirical Risk 
Minimizer from 



Let’s think step by step with an example
Pretend we are LLMs and 



Threshold-based Auto-labeling Workflow(TBAL)
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Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0
Unlabeled Data

i.i.d from space

Auto-labeling 
error tolerance

Input
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Unlabeled Data

Input

i.i.d from space
Learning is NOT the goal.
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P̂ =
Na

N

# #
#

Coverage
Unlabeled Data

Auto-labeling 
error tolerance

Input

#
# #

Auto-labeling Error

Human-labeled 
Auto-labeled 
Labeling mistake

Labeled Data

Expected Output



Confidence/Scoring Function

Pick a Model class and Confidence function
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Model/Hypothesis Class

Softmax Score

0.2 0.1 0.7

Neural NetsLinear Classifiers

Linear Confidence  
Function

TBAL Workflow : Bootstrap (Step 0)



Confidence/Scoring Function

Pick a Model class and Confidence function
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Model/Hypothesis Class

Softmax Score

0.2 0.1 0.7

Neural NetsLinear Classifiers

Linear Confidence  
Function

TBAL Workflow : Bootstrap (Step 0)



TBAL Workflow : Bootstrap (Step 0)
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Get some labeled data for training and validation

Training Set Validation Set

Start small and gradually add more Get “sufficiently” large amount of it.

iid iid

Unlabeled Set



Threshold-based Auto-labeling Workflow(TBAL)
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Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0
Unlabeled Data

i.i.d from space

Auto-labeling 
error tolerance

Input
1

Learn a model w using training set 

Empirical Risk 
Minimizer from 



TBAL Workflow : Step 1 Model training
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Training Set

Train a model

Lin

In practice, usually some surrogate loss is minimized

Predict Blue

Predict Red

Learned Classifier



Threshold-based Auto-labeling Workflow(TBAL)
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Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0

Find auto-labeling region, 
where the model can be trusted 

2

Unlabeled Data
i.i.d from space

Auto-labeling 
error tolerance

Input
1

Learn a model w using training set 

Empirical Risk 
Minimizer from 



TBAL Workflow: Step 2
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Find the Auto-labeling region

Idea 1: Auto-label everywhere.

I am lazy and I trust Lin (the model)! 
 I will auto-label everywhere

Predict Blue

Predict Red

Learned Classifier

Human-labeled 
Auto-labeled 
Labeling mistake



TBAL Workflow: Step 2
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Find the Auto-labeling region

Idea 1: Auto-label everywhere.

I am lazy and I trust Lin (the model)! 
 I will auto-label everywhere

Predict Blue

Predict Red

Learned Classifier

Human-labeled 
Auto-labeled 
Labeling mistake



TBAL Workflow: Step 2
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Find the Auto-labeling region

Idea 1: Auto-label everywhere.

I am lazy and I trust Lin (the model)! 
 I will auto-label everywhere

Predict Blue

Predict Red

Learned Classifier

Human-labeled 
Auto-labeled 
Labeling mistake

Could lead to high auto-labeling errors!



Panda’s strategy does not work,  
he goes to Master Shifu for advice.



TBAL Workflow: Step 2
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Find the Auto-labeling region

Idea 2: Auto-label where the model is accurate ( or trustworthy?)

Trust Here

Cannot Trust  
Here

Master Shifu
The advisors

Learned Model Want this

Predict Blue

Predict Red

Learned Classifier

How to find the yellow and green regions?
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Use the validation data to find the region where the classifier can be trusted

Correct
Incorrect

TBAL Workflow: Step 2
Find the Auto-labeling region
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TBAL Workflow: Step 2
Find the Auto-labeling region

Regions defined by the confidence function

Correct
Incorrect

#
# #

Auto-labeling Error estimation in these regions
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TBAL Workflow: Step 2
Find the Auto-labeling region 1. Estimate the auto-labeling error at several thresholds

2. Pick the smallest threshold having error at most 

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

Smallest threshold that has error < 

The hope
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TBAL Workflow: Step 2
Find the Auto-labeling region

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

#
# #

0



24

TBAL Workflow: Step 2
Find the Auto-labeling region

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

#
# #
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TBAL Workflow: Step 2
Find the Auto-labeling region

#
# #

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r
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TBAL Workflow: Step 2
Find the Auto-labeling region

Cannot find a threshold on this side.

#
# #

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r
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TBAL Workflow: Step 2
Find the Auto-labeling region

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

#
# #



28

TBAL Workflow: Step 2
Find the Auto-labeling region

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

#
# #
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TBAL Workflow: Step 2
Find the Auto-labeling region

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

#
# #

We found a threshold that has error < 



Threshold-based Auto-labeling Workflow(TBAL)

30

Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0

Find auto-labeling region, 
where the model can be trusted 

2 Auto-label points in  
the identified region

3

Unlabeled Data
i.i.d from space

Auto-labeling 
error tolerance

Input
1

Learn a model w using training set 

Empirical Risk 
Minimizer from 
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TBAL Workflow: Step 3  Auto-label points in the identified region

Threshold

Es
tim

at
ed

  
Au

to
-la

be
lin

g 
Er

ro
r

We found a threshold that has error < 

Unlabeled data

Auto-labeled

Trust Here



Threshold-based Auto-labeling Workflow(TBAL)
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Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0

Find auto-labeling region, 
where the model can be trusted 

2 Auto-label points in  
the identified region

3

Remove points in auto-labeling region 

Unlabeled Data Validation Data

4

Unlabeled Data
i.i.d from space

Auto-labeling 
error tolerance

Input
1

Learn a model w using training set 

Empirical Risk 
Minimizer from 
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TBAL Workflow: Step 4 Prepare for the next round

Remaining unlabeled data

Remove auto-labeled points 
from the pool.

Remove points from the validation set  
Falling in the auto-labeling region.

Remaining validation data



Threshold-based Auto-labeling Workflow(TBAL)
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Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0

Find auto-labeling region, 
where the model can be trusted 

2 Auto-label points in  
the identified region

3

Remove points in auto-labeling region 

Unlabeled Data Validation Data

4   Get more human-labeled data for 
training and go to step

5

1

Unlabeled Data
i.i.d from space

Auto-labeling 
error tolerance

Input
1

Learn a model w using training set 

Empirical Risk 
Minimizer from 



Step 5: Query next batch of human-labeled data for 
training
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Go to Step 1

If there is unlabeled data left

Use some active querying strategy  
example: uncertainty sampling Next round’s training data



Intermediate Rounds Output
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Threshold-based Auto-labeling Workflow(TBAL)
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Bootstrap
Model Class

Confidence Function

Create validation and  
initial training sets

0

Find auto-labeling region, 
where the model can be trusted 

2 Auto-label points in  
the identified region

3

Remove points in auto-labeling region 

Unlabeled Data Validation Data

4   Get more human-labeled data for 
training and go to step

5

1

Unlabeled Data
i.i.d from space

Auto-labeling 
error tolerance

Input

Labeled Data

Output

1
Learn a model w using training set 

Empirical Risk 
Minimizer from 



Final Output
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Auto-labeled data in the end Output Labeled Dataset Error and Coverage

Human-labeled 
Auto-labeled 
Labeling mistake

Auto-labeling Error < 1%

Coverage > 95%
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Theoretical Results
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Conditions on the validation data for accurate auto-labeling

Instantiate the upper bound for 

with homogeneous linear separators
uniform distribution on unit-ball in 

Lower bound on number of validation samples to 
ensure auto-labeling error is below 

In the general setup:  No assumptions on data distribution and function classes

Upper bound on excess auto-labeling error

# Validation points



Proof Sketch
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Want this

With Finite Samples Population Level



Proof Sketch
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Uniform convergence results



Experiments



Active Learning and Selective Classification
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Active Learning (AL)

Cohn et al. 1994; 
Balcan, Dasgupta, Nowak, Zhu, Hanneke, Jamieson, 
Chaudhury…. (Over the last 3 decades)

Selective Classification (SC)

El-Yaniv & Weiner, 2010;  Cortes, Desalvo, Mohri 2016; 
Gelbhart & El-Yaniv 2019;  Fisch, Jakkola et al. 2022;

Nowak & Hanneke, 
ICML 2019 Tutorial

A natural auto-labeling strategy (AL+SC):  
First learn the best classifier using Active Learning,  

then auto-label using selective classification.



The methods work as expected on the circles example
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Misspecified setting: Using incorrect model class, ( in practice the correct class is not known)
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We validate the results empirically

Unit ball (Synthetic)

In
cr

ea
si

ng
  

Va
lid

at
io

n 
da

ta

= 1% = 5% = 10%# Classes = 2 # Classes = 200

IMDB Tiny Imagenet

Max # training points = 500 
# Classes = 2

Max # training points = 500 Max # training points = 10000 

As expected, we observe 
Less validation data high auto-labeling errors and high variance in coverage

Suff. Large validation data less auto-labeling errors and less variance in coverage

Fix the auto-labeling error tolerance and the max number of training points algorithm can use. 

Vary the number of validation points



Summary and Takeaways
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1. Auto labeling is a promising soluRon to obtain labeled data.

2. Our work develops a theoreRcal understanding of auto-labeling systems.

3. The promise — Seemingly bad models can auto-label significant porRon of data with good accuracy.

4. The pidall — Hidden downside is it may need large amount validaRon data to ensure good accuracy.



Thank You
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Checkout our paper and code!

https://openreview.net/pdf?id=RUCFAKNDb2
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Wed 13 Dec 
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Heguang Lin 
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