Promises and Pitfalls of Threshold-based Auto-labeling

Harit Vishwakarma

hvishwakarma@cs.wisc.edu Ph.D. Student Dept. of Computer Sciences University of Wisconsin-Madison

Heguang Lin hglin@seas.upenn.edu

Frederic Sala fredsala@cs.wisc.edu

Ramya Korlakai Vinayak ramya@ece.wisc.edu

2023

What & Why auto-labeling?

Data labeling problem

Wide adoption of auto-labeling

Finding the auto-labeling region

Roadmap

How does it work?

Workflow of TBAL

Analysis & Results

Conditions when TBAL works.

Comparison with Active Learning, Selective Classification

We need labeled data and often a lot of it!

Diagnosing a novel disease using brain scans

Fine-tuning Foundation models or Aligning LLMs

Data Labeling costs a lot of time and money

Crowdsourcing is widely used to get labels

Wisdom of Crowd

Takes a lot of time and money to get labels.

IMAGENET Deng et. Al. 2009

Took multiple years and a lot of human effort

A screenshot of the ImageNet database online

How do we get accurately labeled data, while spending less time and money?

Automatically label datasets with minimal human feedback Human-labeled

Get labels for "minimal" points from human

Human Labeled data

Auto-label using the model

Train a model on these labeled points and

00

Auto-Labeling Errors and Their Impact

Unlabeled Data

Human-labeled Auto-labeled 00

Labeled Data

Auto-Labeling Errors and Their Impact

1. The output dataset may have labeling errors

2. The impact of errors in datasets is more severe

a) Multiple downstream applications b) Longer shelf-life than models.

Auto-labeling systems are widely used

Auto-labeling Platforms

Despite wide adoption, our understanding of auto-labeling systems is limited!

Despite wide adoption, our **understanding of auto-labeling systems is limited!**

To address this gap we develop a theoretical understanding of auto-labeling systems.

Auto-labeling systems are widely used

Even in high risk applications

health care, telecom, recruiting...

So we need to understand them.

What & Why auto-labeling?

Data labeling problem

Adoption of auto-labeling

How does it work?

Workflow of TBAL

Finding the auto-labeling region

Roadmap

Analysis & Results

Conditions when TBAL works.

Comparison with Active Learning, Selective Classification

Quality and Quantity of Auto-labeled Data

Auto-labeled 00

0

0

maximize this

Number of Nunlabeled points

00 0 Set of auto-labeled points

Ο

 N_a Number of auto-labeled points

Quantity **Auto-labeling Coverage** Good Stuff

N

Unknown Auto-labeled 00 **True Decision Boundary** X Labeling mistake X Ο X 0

 M_a Number of labeling mistakes

Quality **Auto-labeling Error**

$$\widehat{\mathcal{E}} = \frac{M_a}{N_a}$$

Bad Stuff minimize this

Threshold-based Auto-labeling Workflow(TBAL)

Pretend we are LLMs and

Let's think step by step with an example

Threshold-based Auto-labeling Workflow(TBAL)

Input

Unlabeled Data i.i.d from space X

 ϵ_a

$\begin{array}{l} \textbf{Model Class} \\ \mathcal{H}: \mathcal{X} \mapsto \mathcal{Y} \\ h(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}) \end{array} \end{array}$

Confidence Function

$$g: \mathcal{X} \mapsto T \subseteq \mathbb{R}^+$$
$$g(\mathbf{x}; \mathbf{w}) = |\mathbf{w}^T \mathbf{x}|$$

Unlabeled Data

i.i.d from space \mathcal{X}

Learning f^* is NOT the goal.

Input

Unlabeled Data

Auto-labeling error tolerance

 ϵ_a

0.0 00 0 Ο 0 О O

Expected Output

Human-labeled Auto-labeled 00 X Labeling mistake

Auto-labeling Error

$$\widehat{\mathcal{E}} = \frac{M_a}{N_a} = \frac{\# \times}{\# \circ + \# \circ} \leq$$

Coverage

$$\hat{\mathcal{P}} = \frac{N_a}{N} = \frac{\texttt{\#O} + \texttt{\#O}}{\texttt{\#O}}$$

TBAL Workflow : Bootstrap (Step 0) Pick a Model class and Confidence function

$$egin{aligned} \mathcal{H} : \mathcal{X} \mapsto \mathcal{Y} \ \mathcal{X} = \{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_2 \leq 1\} \ \mathcal{Y} = \{-1, +1\} \end{aligned}$$

Confidence/Scoring Function

$$g: \mathcal{X} \mapsto T \subseteq \mathbb{R}^+$$
$$T = [0, 1]$$

Model/Hypothesis Class

Linear Classifiers $\mathcal{W} = \{ \mathbf{w} \in \mathbb{R}^2 : ||\mathbf{w}||_2 \le 1 \}$ $h(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x})$ $\notin \mathcal{H}$

Linear Confidence Function $g(\mathbf{x}; \mathbf{w}) =$ $1 + e^{-|\mathbf{w}^T \mathbf{x}|}$

 $\equiv |\mathbf{w}^T \mathbf{x}|$

TBAL Workflow : Bootstrap (Step 0) Pick a Model class and Confidence function

Model/Hypothesis Class

$$\mathcal{H}: \mathcal{X} \mapsto \mathcal{Y}$$

 $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}||_2 \leq 1\}$
 $\mathcal{Y} = \{-1, +1\}$

Confidence/Scoring Function

$$g: \mathcal{X} \mapsto T \subseteq \mathbb{R}^+$$
$$T = [0, 1]$$

TBAL Workflow : Bootstrap (Step 0) Get some labeled data for training and validation

Training Set

 $D_{train} = \{(\mathbf{x}_i, y_i) : i \in I_{train}\}$ Start small and gradually add more **Unlabeled Set**

Validation Set

 $D_{val} = \{ (\mathbf{x}_i, y_i) : i \in I_{val} \}$

Get "sufficiently" large amount of it.

Threshold-based Auto-labeling Workflow(TBAL)

Input

Unlabeled Data i.i.d from space X

 ϵ_a

TBAL Workflow : Step 1 Model training

Training Set

$$\hat{h} = \texttt{EmpiricalRis}$$

 $\hat{h} = \operatorname*{arg\,min}_{h \in \mathcal{H}} rac{1}{|D_{train}|}$

In practice, usually some surrogate loss is minimized

Threshold-based Auto-labeling Workflow(TBAL)

Confidence Function $g: \mathcal{X} \mapsto T \subseteq \mathbb{R}^+$ $g(\mathbf{x}; \mathbf{w}) = |\mathbf{w}^T \mathbf{x}|$

Learn a model w using training set Empirical Risk Minimizer from \mathcal{H}

Find the Auto-labeling region

Idea 1: Auto-label everywhere.

Find the Auto-labeling region

Idea 1: Auto-label everywhere.

Find the Auto-labeling region

Idea 1: Auto-label everywhere.

Could lead to high auto-labeling errors!

Panda's strategy does not work, he goes to Master Shifu for advice.

Idea 2: Auto-label where the model is accurate (or trustworthy?)

Learned Model

How to find the yellow and green regions?

Use the validation data to find the region where the classifier can be trusted

Trust Here

Predictions sorted by confidence scores

$$g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$$

Regions defined by the confidence function

 $A_v(\hat{\mathbf{w}}, t, y) = \{ \mathbf{x} \in X_v : g(\mathbf{x}; \hat{\mathbf{w}}) \ge t, \hat{h}(\mathbf{x}, \hat{\mathbf{w}}) = y \}$

Auto-labeling Error estimation in these regions

$$\hat{E}_{v}(\hat{\mathbf{w}}|t,y) = \frac{1}{|A_{v}(\hat{\mathbf{w}},t,y)|} \sum_{\mathbf{x}\in A_{v}(\hat{\mathbf{w}},t,y)} \mathbb{1}\{\hat{h}(\mathbf{x};\hat{\mathbf{w}})\neq f^{\star}(\mathbf{x})\}$$

$$\mathbf{A} = \frac{\# \mathbf{X}}{\# \mathbf{V} + \# \mathbf{X}}$$

 $g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$

 $A_v(\hat{\mathbf{w}}, t, y) = \{ \mathbf{x} \in X_v : g(\mathbf{x}; \hat{\mathbf{w}}) \ge t, \hat{h}(\mathbf{x}, \hat{\mathbf{w}}) = y \}$

Predictions sorted by confidence scores

$$g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$$

$$g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$$

 $A_v(\hat{\mathbf{w}}, t, y) = \{ \mathbf{x} \in X_v : g(\mathbf{x}; \hat{\mathbf{w}}) \ge t, \hat{h}(\mathbf{x}, \hat{\mathbf{w}}) = y \}$

 $g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$

Cannot find a threshold on this side.

$$g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$$

$$g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$$

$$A_v(\hat{\mathbf{w}}, t, y) = \{\mathbf{x} \in X_v : g(\mathbf{x}; \hat{\mathbf{w}}) \ge t, \hat{h}(\mathbf{x}, \hat{\mathbf{w}}) =$$

Find the Auto-labeling region

$$g(\mathbf{x}; \hat{\mathbf{w}}) = |\hat{\mathbf{w}}^T \mathbf{x}|$$

Threshold-based Auto-labeling Workflow(TBAL)

TBAL Workflow: Step 3 Auto-label points in the identified region

We found a threshold that has error < ϵ_a

Auto-labeled

Threshold-based Auto-labeling Workflow(TBAL)

TBAL Workflow: Step 4 Prepare for the next round

Remove auto-labeled points from the pool.

Remaining unlabeled data

Remove points from the validation set Falling in the auto-labeling region.

Remaining validation data

Threshold-based Auto-labeling Workflow(TBAL)

Step 5: Query next batch of human-labeled data for training

Use some active querying strategy example: uncertainty sampling

Next round's training data

If there is unlabeled data left

Go to Step 1

Intermediate Rounds Output

Threshold-based Auto-labeling Workflow(TBAL)

00 X

Auto-labeled data in the end

Final Output

Human-labeled Auto-labeled Labeling mistake

Output Labeled Dataset

Error and Coverage

Auto-labeling Error < 1%

Coverage > 95%

What & Why auto-labeling?

Data labeling problem

Adoption of auto-labeling

Finding the auto-labeling region

Roadmap

How does it work?

Workflow of TBAL

Analysis & Results

Conditions when TBAL works.

Comparison with Active Learning, Selective Classification

Theoretical Results

Conditions on the validation data for accurate auto-labeling

In the general setup: No assumptions on data distribution and function classes

Upper bound on excess auto-labeling error

$$\mathcal{O}\left(\frac{1}{\sqrt{N_v}} + \mathfrak{R}_{N_v}(\mathcal{H}^{T,g})\right)$$

Lower bound on number of validation samples to ensure auto-labeling error is below ϵ_a

$$\Omega\!\left(\frac{1}{\epsilon_a^2}\right)$$

$$\mathcal{H}^{T,g} := \mathcal{H} \times T \quad (h,t) \in \mathcal{H}^{T,g}$$
$$(h,t)(\mathbf{x}) := \begin{cases} h(\mathbf{x}) & \text{if } g(h,\mathbf{x}) \ge \\ \text{abstain} & \text{o.w.} \end{cases}$$

Instantiate the upper bound for uniform distribution on unit-ball in \mathbb{R}^d with homogeneous linear separators

Proof Sketch

With Finite Samples $A_v(h,t) = \{ \mathbf{x} \in X_v : g(\mathbf{x};h) \ge t \}$

w.p.
$$1 - \delta$$

 $\mathcal{E}(h|t) \le \widehat{\mathcal{E}}_v(h|t) + \psi(N)$

Population Level

$$\mathcal{A}(h,t) = \{\mathbf{x} \in \mathcal{X} : g(\mathbf{x};h) \ge t\}$$

 $\mathcal{E}(h|t) = \mathbb{E}_{x|\mathcal{A}(h,t)}[\mathbb{1}\{h(\mathbf{x}) \neq f^{\star}(\mathbf{x})\}]$

Want this

$V_v, \delta, \mathcal{H}, g, T) \quad \forall h \in \mathcal{H}, \forall t \in T$

Proof Sketch

$$\begin{aligned} \mathcal{E}(h,t) &= \mathbb{E}_{\mathbf{x}}[\mathbbm{1}\{h(\mathbf{x}) \neq f^{\star}(\mathbf{x})\} \wedge \mathbbm{1}\{g(\mathbf{x}) \geq t\}] \\ \mathbb{P}(h,t) &= \mathbb{E}_{\mathbf{x}}[\mathbbm{1}\{g(\mathbf{x}) \geq t\}] \qquad \mathcal{E}(h|t) = \frac{\mathcal{E}(h,t)}{\mathbb{P}(h,t)} \end{aligned}$$

$$\widehat{\mathcal{E}}_{v}(h,t) = \frac{1}{N_{v}} \sum_{\mathbf{x}_{i} \in X_{v}} \mathbb{1}\{h(\mathbf{x}_{i}) \neq f^{\star}(\mathbf{x}_{i})\} \land \mathbb{1}\{g(\mathbf{x}_{i}) \ge t\}$$
$$\widehat{P}_{v}(h,t) = \frac{1}{N_{v}} \sum_{\mathbf{x}_{i} \in X_{v}} \mathbb{1}\{g(\mathbf{x}_{i}) \ge t\} \qquad \widehat{\mathcal{E}}_{v}(h|t) = \frac{\widehat{\mathcal{E}}_{v}(h,t)}{\widehat{P}_{v}(h,t)}$$

Uniform convergence results

Experiments

Active Learning and Selective Classification

Active Learning (AL)

$$\operatorname{err}(h) = \mathbb{E}_{\mathbf{x}}[\mathbb{1}\{h(\mathbf{x}) \neq y\}]$$
$$h^* \in \operatorname{arg\,min}_{h \in \mathcal{H}} \mathbb{E}_{\mathbf{x}}[\mathbb{1}\{h(\mathbf{x}) \neq y\}]$$
$$\operatorname{err}(\hat{h}) - \operatorname{err}(h^*) \to 0$$

Cohn et al. 1994;

Balcan, Dasgupta, Nowak, Zhu, Hanneke, Jamieson,

Chaudhury.... (Over the last 3 decades)

Selective Classification (SC)

El-Yaniv & Weiner, 2010; Cortes, Desalvo, Mohri 2016; Gelbhart & El-Yaniv 2019; Fisch, Jakkola et al. 2022;

A natural auto-labeling strategy (AL+SC): First learn the best classifier using Active Learning, then auto-label using selective classification.

The methods work as expected on the circles example

Misspecified setting: Using incorrect model class, (in practice the correct class is not known)

We validate the results empirically

Vary the number of validation points

	N	Error (%)		Coverage (%)	
		TBAL	AL+SC	TBAL	AL+SC
	100	$3.10{\scriptstyle~\pm1.80}$	$0.68{\scriptstyle~\pm 0.81}$	$71.43 {\scriptstyle~\pm 8.86}$	$96.95{\scriptstyle~\pm1.01}$
	400	1.65 ± 0.65	$0.32{\scriptstyle~\pm 0.15}$	93.27 ±2.50	96.91 ±0.99
	800	1.08 ± 0.47	0.24 ± 0.16	96.01 ±1.16	96.31 ± 1.36
	1200	$0.78{\scriptstyle~\pm 0.27}$	0.17 ± 0.11	$96.82{\scriptstyle~\pm 0.84}$	95.96 ± 1.40
	1600	$0.65{\scriptstyle~\pm 0.20}$	0.13 ±0.08	96.93 ± 0.57	$95.70{\scriptstyle~\pm1.38}$
	2000	$0.54{\scriptstyle~\pm 0.16}$	0.21 ±0.11	$97.23{\scriptstyle~\pm 0.42}$	96.36 ±1.13

Validation data

Increasing

Unit ball (Synthetic)

N.,	Error (%		
	TBAL	A	
200	$2.28{\scriptstyle~\pm 0.21}$	3.	
400	$1.29{\scriptstyle~\pm 0.10}$	1.	
600	1.41 ± 0.20	1.	
800	1.62 ± 0.30	2.	
1000	1.64 ± 0.23	1.	

Classes = 2 ϵ_a = 1% Max # training points = 500

Fix the auto-labeling error tolerance and the max number of training points algorithm can use.

IMDB

Coverage (%) %) **TBAL** AL+SC AL+SC 68.24 ± 6.20 57.77 ±13.09 $.11 \pm 0.86$ 63.81 ± 4.86 63.06 ± 10.70 $.98 \pm 0.40$.81 ±0.22 62.92 ± 9.20 69.64 ±3.98 67.45 ±3.72 63.22 ± 7.89 $.04 \pm 0.35$ $.97 \pm 0.26 | 70.28 \pm 2.82$ 66.11 ± 8.00

Tiny Imagenet

N	Erro	Coverage		
	TBAL	AL+SC	TBAL	
2000	0.0 ± 0.0	$0.0{\scriptstyle~\pm 0.0}$	0.0 ± 0.0	
4000	$10.50{\scriptstyle~\pm 6.01}$	$7.37{\scriptstyle~\pm4.57}$	0.47 ± 0.05	(
6000	10.61 ± 0.62	7.71 ±1.03	10.16 ± 1.10	Ζ
8000	$9.90{\scriptstyle~\pm 0.63}$	$6.80{\scriptstyle~\pm 0.77}$	25.84 ± 1.57	1
10000	8.97 ± 0.36	$6.87{\scriptstyle~\pm 0.48}$	$32.19{\scriptstyle~\pm1.34}$	2

Classes = 2 ϵ_a = 5% Max # training points = 500

 ϵ_a = 10% # Classes = 200 Max # training points = 10000

As expected, we observe

high auto-labeling errors and high variance in coverage

less auto-labeling errors and less variance in coverage

Summary and Takeaways

1. Auto labeling is a promising solution to obtain labeled data.

Threshold-based Auto-labeling Workflow

- 2. Our work develops a theoretical understanding of auto-labeling systems.
- 3. The promise Seemingly bad models can auto-label significant portion of data with good accuracy.
- 4. The pitfall Hidden downside is it may need large amount validation data to ensure good accuracy.

Checkout our paper and code! Come to our poster @ NeurIPS

Paper https://openreview.net/pdf?id=RUCFAKNDb2 Code https://github.com/harit7/TBAL-NeurIPS-23

Thank You

0 Hall B1 + B2 #1103 Wed 13 Dec 3 p.m. - 5 p.m. PST

Contact us

Harit Vishwakarma hvishwakarma@cs.wisc.edu

Frederic Sala fredsala@cs.wisc.edu

ramya@ece.wisc.edu