Confidence Functions for Auto-labeling

Advisors Prof. Fred Sala Prof. Ramya Korlakai Vinayak

18 Mar, 2024

Harit Vishwakarma CS Ph.D. Candidate

Yi (Reid) Chen ECE Ph.D. Student

Srinath Namburi **CS** Masters Student

Sui Jiet Tay CS Undergrad

Roadmap

We need labeled data and often a lot of it!

Training from Scratch

Fine-tuning pre-trained models

Data Labeling costs a lot of time and money

Crowdsourcing is widely used to get labels

Wisdom of Crowd

Takes a lot of time and money to get labels.

IMAGENET Deng et. Al. 2009

Took multiple years and a lot of human effort

A screenshot of the ImageNet database online

Re-create ImageNet using Mturk: \$300,000.00

ML needs high-quality (accurately) labeled datasets. +Obtaining such datasets is costly.

Labeled data bottleneck

How to solve the labeled data bottleneck?

Auto-labeling

Unlabeled Data

A broad set of techniques to create **labeled datasets** using classifiers and human inputs.

Auto-labeling

Unlabeled Data

The output dataset may have labeling errors.

- a. Datasets are static and have long shelf-life.
- b. Multiple models are trained on the same dataset.

A broad set of techniques to create **labeled datasets** using classifiers and human inputs.

Labeled Data

The impact of these errors is significant:

We need strict control over the errors in the dataset.

Threshold-based Auto-labeling (TBAL)

But our understanding is limited!

can provide such control.

Combines ideas from Selective Classification and Transductive Learning.

Inspired by Amazon Sagemaker Groundtruth

A commercial system getting used in practice

Amazon SageMaker Ground Truth

Roadmap

Understanding Threshold-based Auto-labeling

Quality and Quantity of Auto-labeled Data

Auto-labeled 00

Number of Nunlabeled points

Set of auto-labeled points

 N_a Number of auto-labeled points

Quantity **Auto-labeling Coverage** Good Stuff

 \mathcal{N}

maximize this

There are Trade-offs between Coverage and Error

Unknown Auto-labeled 00 **True Decision Boundary** X Labeling mistake 0

 M_a Number of labeling mistakes

Quality **Auto-labeling Error**

$$\widehat{\mathcal{E}} = \frac{M_a}{N_a}$$

Bad Stuff minimize this

Need to guarantee $\leq \epsilon_a$

Threshold-based Auto-labeling Workflow (TBAL)

TBAL Workflow: Step 2 Find the Auto-labeling region

Learned Model

Auto-label only where the model is accurate (or trustworthy)

Only predict where the classifier is accurate

Selective Classification (SC)

El-Yaniv & Weiner, 2010; Cortes, Desalvo, Mohri 2016; Gelbhart & El-Yaniv 2019; Fisch, Jakkola et al. 2022;

Use validation data and confidence scores to find the auto-labeling region.

On the validation data we know where the classifier is correct and incorrect.

Trust Here

Confidence Function

confidence function $g: \mathcal{X} \to \Delta^k$

Confidence in predictions of the classifier

Depends on h but drop it for convenience

Predicted label/class

$$\hat{y} := h(\mathbf{x})$$

Confidence Score $g(\mathbf{x})[\hat{y}]$

Softmax Score

Multi-class setting

Margin Scores

Binary classes (Linear)

 $\hat{y} = 1$ $g(\mathbf{x})[\hat{y}] = \mathbf{w}^T \mathbf{x}$

We studied TBAL and the role of validation data set

Promises and Pitfalls of Threshold-based Auto-labeling

Harit Vishwakarma hvishwakarma@cs.wisc.edu University of Wisconsin-Madison

Frederic Sala fredsala@cs.wisc.edu University of Wisconsin-Madison Heguang Lin hglin@seas.upenn.edu University of Pennsylvania

Ramya Korlakai Vinayak ramya@ece.wisc.edu University of Wisconsin-Madison

NeurIPS, 2023 (Spotlight)

More details in the paper.

https://arxiv.org/abs/2211.12620v2

Long talk on MLOpt Youtube Channel <u>https://www.youtube.com/@UWMadisonMLOPTIdeaSeminar</u>

TL;DR

Theoretical and empirical results,

TBAL can produce accurately labeled dataset, provided there is sufficient validation data.

We also observed a blocker/spoilsport.

But TBAL could get very little coverage, irrespective of the validation data size.

Confidence scores were the culprit.

So we started thinking about confidence functions for TBAL.

We had models with around **50% test accuracy** for a 10 class prediction problem.

Roadmap

Confidence Functions for Auto-labeling

Pearls from Pebbles: Improved Confidence Functions for Auto-labeling

Harit Vishwakarma

hvishwakarma@cs.wisc.edu

Satya Sai Srinath Namburi

sgnamburi@cs.wisc.edu

University of Wisconsin-Madison, WI, USA

Reid (Yi) Chen reid.chen@wisc.edu

Sui Jiet Tay sstay2@wisc.edu

Frederic Sala fredsala@cs.wisc.edu Ramya Korlakai Vinayak ramya@ece.wisc.edu

https://arxiv.org/pdf/2404.16188

Confidence Functions for TBAL

Standard training procedure and softmax scores can be bad for auto-labeling

Prone to the overconfidence problem

High scores even for incorrect predictions

Szegedy et al. 2014; Nguyen et al. 2015; Hendricks & Gimpel 2017; Guo et al. 2017; Hein et al. 2018, Bai et al. 2021

0.75

Kernel Density Estimate(KDE) of scores

on the remaining unlabeled data

Scores

1.00

Test Accuracy	55%
Coverage	2.9%
Auto-labeling Error	10.1%

Run 1 round of TBAL

Experiment

Data	CIFAR-10
Model	CNN model (5.8 M parameters)
Training data	4000 points drawn randomly
Validation data	1000 points drawn randomly
Error Tolerance	5%

Ad-hoc Methods to Reduce Overconfidence may not help either

Calibration

Points where score is t, the accuracy on those points should be t

Chuan Guo^{*1} Geoff Pleiss^{*1} Yu Sun^{*1} Kilian Q. Weinberger¹

TOP-LABEL CALIBRATION AND MULTICLASS-TO-BINARY REDUCTIONS

Chirag Gupta & Aaditya Ramdas

Like Hui¹² Mikhail Belkin²¹ Stephen Wright³

Platt 1999; Zadrozny & Elkan, 2001; 2002; Guo et al. 2017; Kumar et al. 2019; Corbiére et al. (2019); Kull et al. 2019, Mukhoti et al. 2020; Gupta & Ramdas 2021; Moon et al. 2020; Zhu et al. 2022; Hui et al. 2023

Verified Uncertainty Calibration

Ananya Kumar, Percy Liang, Tengyu Ma

Cut your Losses with Squentropy

Run 1 round of TBAL + **Temperature Scaling**

Data	CIFAR-10
Model	CNN model (5.8 M parameters)
Training data	4000 points drawn randomly
Validation data	1000 points drawn randomly
Error Tolerance	5%

Test Accuracy	55%
Coverage	4.9%
Auto-labeling Error	14.1%

Kernel Density Estimate(KDE) of scores on the remaining unlabeled data

What are the right choices of confidence functions for TBAL and how can we obtain such functions?

The Optimal Confidence Functions for TBAL

In any round, given the classifier h

We want to find function g that can,

a) Give maximum coverage

b) Ensure auto-labeling error $\leq \epsilon_a$

Hypothetically, if we know true distribution and labels,

Coverage $\mathscr{P}(g, \mathbf{t} \mid h) := \mathbb{P}_{\mathbf{x}}(g(\mathbf{x})[\hat{y}] \ge \mathbf{t}[\hat{y}]),$

Auto-labeling $\mathscr{E}(g, \mathbf{t} \mid h) := \mathbb{P}_{\mathbf{x}}(y \neq \hat{y} \mid g(\mathbf{x})[\hat{y}] \ge \mathbf{t}[\hat{y}]).$ Error

> $\mathscr{P}(g, \mathbf{t} \mid h) \text{ s.t. } \mathscr{E}(g, \mathbf{t} \mid h) \leq \epsilon_a.$ (P1) arg max $g \in G, \mathbf{t} \in T^k$

$$g^{\star} \mathbf{t}^{\star}$$

 $\hat{y} := h(\mathbf{x})$ confidence function $g: \mathcal{X} \to \Delta^k$ Depends on hbut drop it for convenience

Address Two Challenges

Do not know the true quantities

Efficient method to solve the optimization

Use part of validation data to estimate the quantities

$$\widehat{\mathscr{P}}(g, \mathbf{t} \mid h, D) := \frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \mathbb{1}\left(g(\mathbf{x})[\hat{y}] \ge \mathbf{t}\right)$$

$$\widehat{\mathcal{E}}(g, \mathbf{t} \mid h, D) := \frac{\sum_{(\mathbf{x}, y) \in D} \mathbf{1} \left(y \neq \hat{y} \land g(\mathbf{x}) \right)}{\sum_{(\mathbf{x}, y) \in D} \mathbf{1} \left(g(\mathbf{x}) [\hat{y}] \right)}$$

$$\underset{g \in \mathcal{G}, \mathbf{t} \in T^{k}}{\operatorname{arg\,max}} \quad \widehat{\mathscr{P}}(g, \mathbf{t} \mid h, D_{\operatorname{cal}}) \text{ s.t. } \widehat{\mathscr{E}}(g, \mathbf{t} \mid h, D_{\operatorname{cal}}) \leq \epsilon_{a}.$$
(P2)

 $[\hat{y}]$),

Address Two Challenges

Do not know the true quantities Use part of validation data

Efficient method to solve the optimization 0-1 loss, hard to optimize

Use surrogates for 0-1 variables

$$\mathbb{1}(g(\mathbf{x})[\hat{y}] \ge \mathbf{t}[\hat{y}]) \longrightarrow \sigma(\alpha, g(\mathbf{x})[\hat{y}])$$

$$\widetilde{\mathscr{P}}(g, \mathbf{t}|h, D_{\mathrm{cal}}) \coloneqq rac{1}{|D_{\mathrm{cal}}|} \sum_{(\mathbf{x}, y) \in D_{\mathrm{cal}}} \sigma(lpha, g(\mathbf{x})[\hat{y}] - \mathbf{t}[\hat{y}]),$$

$$\widetilde{\mathcal{E}}(g, \mathbf{t} \mid h, D_{\mathrm{cal}}) := \frac{\sum_{(\mathbf{x}, y) \in D_{\mathrm{cal}}} \mathbb{1}\left(y \neq \hat{y}\right) \sigma\left(\alpha, g(\mathbf{x})[\hat{y}] - \mathbf{t}[\hat{y}]\right)}{\sum_{(\mathbf{x}, y) \in D_{\mathrm{cal}}} \sigma\left(\alpha, g(\mathbf{x})[\hat{y}] - \mathbf{t}[\hat{y}]\right)}$$

$$\arg\min_{g \in \mathcal{G}, \mathbf{t} \in T^{k}} \quad -\widetilde{\mathscr{P}}(g, \mathbf{t} \mid h, D_{cal}) + \lambda \,\widetilde{\mathscr{E}}(g, \mathbf{t} \mid h, D_{cal})$$
(P3)

$$] - \mathbf{t}[\hat{y}] ig)$$

$$\sigma(\alpha, z) := 1/(1 + \exp(-\alpha z))$$

Address Two Challenges Do not know the true quantities Estimate using part of validation data Efficient method to solve opt. Replace 0-1 variables by sigmoids. Solve it using gradient-based methods SGD, Adam etc.

Updated workflow of TBAL

It boosts coverage significantly

(a) Softmax

(b) Temp. Scaling

Data	CIFAR-10
Model	CNN model (5.8 M parameters
Training data	4000 points drawn randomly
Validation data	1000 points drawn randomly
Error Tolerance	5%

(c) Colander (Ours)

(d) Coverage

(e) Auto-labeling error

Run 1 round of TBAL + **Temperature Scaling** or **Colander**

Choice of G

Protocol for Experiments

We want to simulate how it would be run in practice.

Hyperparameter Search

For any combination of hyperparameters run one round of TBAL and evaluate on $D_{
m hyp}$ and pick the combination with maximum coverage while having error below $< \epsilon_a$

	D_{v}		
$D_{ ext{train}}$ X_u	$D_{ m th}$	D_{cal}	D_{hyp}

Cross product, resulting in 20 methods.

Empirical Results

Dataset	Model h	N	N_u	K	N_t	N_v	$N_{ m hyp}$	yp Modality Prep		reprocess	Di
MNIST	LeNet-5	70k	60k		500	500	500	Image	e N	None	
CIFAR-10		50K	40k	10		8K 01-	2K 21-	Image		None	
20 Newsgrou		110K 11.21-	90K 01-	200	10K 21-	ок 1.61-	2K 600	Image Text	C C	LIP))))
20 Newsgroup MLP		11.3K	7 K	20	21	1.0K	000	Тел	1	agemu.	1,0
Train-time	Post-hoc _	MNIST		CIFAR-10		20 Newsgroups		Tiny	Tiny-Ima		
		Err (↓)	Cov ((†)	$\mathbf{Err}\left(\downarrow\right)$	Cov	(†)	Err (↓)	Cov (†) Err (,	Ļ)
Vanilla	Softmax	4.1±0.7	85.0±2.5		$4.8{\scriptstyle\pm0.2}$	14.0±2.1		$6.0{\pm}0.6$	48.2±1.0	5 11.1±0).3
	TS	$7.8{\scriptstyle \pm 0.6}$	$94.2\pm$	0.5	7.3 ± 0.3	$23.2{\scriptstyle\pm0.7}$		$9.7{\pm}0.6$	60.7±2.3	3 16.3±0).5
	Dirichlet	$7.9{\pm}0.7$	93.2±2.2		$7.7{\pm}0.5$	22.4±1.2		9.4±0.9	59.4 ± 1.8	3 17.1±0).4
	SB	$6.7{\pm}0.5$	$92.6\pm$	1.5	$6.1{\pm}0.4$	18.6 ± 1.1		$8.1{\pm}0.6$	58.1±1.8	3 15.7±0	.6
	Top-HB	$7.4{\pm}1.4$	93.1±	3.6	$6.0{\scriptstyle \pm 0.7}$	15.6±1.9		$9.2{\pm}1.0$	59.0±2.0) 16.6±0).5
	Ours	4.2 ± 1.5	95.6±1.4		3.0±0.2	$78.5{\scriptstyle \pm 0.2}$		2.5±1.1	80.6±0.1	7 1.4 ±2.	1
	Softmax	$4.7{\pm}0.4$	86.0±4.5		$5.2{\pm}0.3$	15.9±0.8		5.8 ± 0.5	48.3±0.3	3 10.4±0).4
CRL	TS	$8.0{\scriptstyle \pm 0.8}$	$94.8{\scriptstyle\pm0.8}$		$6.8{\scriptstyle \pm 0.8}$	20.3±1.1		9.5±1.0	61.7±1.6	5 15.8±0).6
	Dirichlet	$8.6{\scriptstyle\pm0.6}$	93.1±1.6		$7.7{\pm}0.2$	20.9±1.1		8.7±0.9	58.0±1.4	4 16.3±0).4
	SB	$7.4{\scriptstyle\pm0.8}$	93.1±2.7		$5.9{\scriptstyle \pm 0.9}$	17.9±1.5		8.9±1.1	57.9±3.9	9 15.0±0).4
	Top-HB	$7.7{\scriptstyle\pm0.8}$	94.1 ± 1.5		$4.4{\pm}0.5$	$12.3{\scriptstyle\pm0.4}$		$8.8{\scriptstyle\pm1.0}$	58.8 ± 2.7	7 16.5±0).5
	Ours	4.5 ± 1.4	95.6±1.3		$2.2{\pm}0.6$	77.9 ± 0.2		1.8±1.2	81.3±0.	5 2.8 ±2.	1
	Softmax	$4.8{\scriptstyle\pm0.8}$	84.2±4.1		$4.9{\scriptstyle \pm 0.4}$	15.6±1.7		$5.4{\scriptstyle\pm0.7}$	45.4±1.9	0 10.5±0).3
Dataset MNIST CIFAR-10 Tiny-Imagenet 20 Newsgroup Train-time Vanilla Vanilla CRL FMFP	TS	$8.0{\scriptstyle \pm 0.6}$	95.3±1.6		$6.5{\scriptstyle \pm 0.3}$	21.0 ± 1.5		9.5±0.5	57.7±2.2	2 16.2±1	.1
	Dirichlet	$8.2{\pm}1.3$	$94.0{\pm}2.2$		$6.9{\scriptstyle \pm 0.4}$	$21.7{\pm}1.2$		$8.9{\scriptstyle\pm1.0}$	56.6±2.4	4 17.4±0	.8
	SB	$7.2{\pm}1.1$	93.1±2.3		$6.1{\pm}0.5$	19.5 ± 1.0		8.6±0.4	55.8±1.3	3 15.5±0	.6
	Top-HB	$7.1{\pm}0.6$	93.3±4.9		$5.2{\scriptstyle \pm 0.5}$	$14.2{\pm}2.4$		$9.0{\pm}0.7$	57.9±2.4	4 16.2±0).4
	Ours	4.6 ± 0.8	95.7 ±	0.2	3.0±0.4	77.4±0.2		2.5±0.9	80.8±0.	5 1.8±2.	.0
	Softmax	3.7±1.0	88.2±3.9		$5.2{\pm}0.5$	21.2±1.8		4.6±0.4	52.0±1.2	2 7.8±0.	3
	TS	$6.2{\pm}1.1$	95.6±0.9		$6.9{\scriptstyle \pm 0.6}$	28.2±2.5		8.3±0.6	66.6±1.4	4 13.3±0).1
Squentropy _	Dirichlet	$6.5{\pm}1.2$	$95.9{\scriptstyle\pm0.8}$		$7.3{\scriptstyle \pm 0.3}$	$29.4{\pm}1.1$		7.8±0.6	64.0±1.3	3 14.1±0).3
	SB	$6.0{\scriptstyle \pm 0.8}$	95.3±	1.2	$6.2{\pm}0.4$	23.8	±1.9	7.8±0.7	63.0±2.9	9 13.0±0).5
	Top-HB	$5.3{\scriptstyle \pm 0.4}$	$96.4{\scriptstyle\pm0.9}$		$4.3{\scriptstyle \pm 0.5}$	$15.8{\scriptstyle\pm1.4}$		8.2 ± 0.8	66.5±2.2	2 13.7±0).1
	Ours	$4.1{\pm}0.8$	97.2 ±	0.5	$2.3{\pm}0.5$	79.0	±0.3	3.3±0.8	82.9±0.4	4 0.6±0.	.2

imension $\times 28 \times 28$ \times 32 \times 32 2 024 ageNet Cov (†) 32.6 ± 0.5 37.4 ± 1.5 $33.3{\scriptstyle \pm 2.0}$ $35.4{\scriptstyle\pm1.2}$ 37.6 ± 2.2 59.2±0.8 $32.5{\pm}0.6$ 37.4 ± 1.7 $33.1{\pm}1.9$ $35.5{\pm}1.2$ $38.9{\scriptstyle\pm1.6}$ 61.2±1.4 $32.4{\pm}1.4$ $37.7{\scriptstyle\pm1.8}$ $33.0{\scriptstyle\pm1.8}$ 36.1 ± 0.5 37.4 ± 1.1 60.8±1.4 $36.2{\scriptstyle\pm0.8}$ $\begin{array}{c} 44.9{\scriptstyle\pm1.0}\\ 42.5{\scriptstyle\pm0.7}\end{array}$ $45.2{\scriptstyle\pm2.0}$ $45.9{\scriptstyle\pm1.4}$ 66.5±0.7

Results

Colander works as expected, achieves high coverage while maintaining error guarantee.

Colander improves upon all training methods

Squentropy does better than other training methods

Other post-hoc methods

increase the coverage but also leading to higher error

The literature has focused on calibrating highly accurate models. May need rethinking when calibrating bad models.

Summary

- Confidence functions play a crucial role in TBAL.
- Commonly used choices such as **softmax scores** can lead to poor auto-labeling performance.
- Applying ad-hoc solutions (e.g. calibration) may not help much.
 - We proposed **Colander** a principled method to learn the optimal confidence functions for TBAL
 - and show that it boosts the performance significantly.

Thank You

•••

Questions and Feedback

\end{talk}