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Abstract

Robustness to out-of-distribution (OOD) sam-
ples is crucial for the safe deployment of ma-
chine learning models in the open world. Re-
cent works have focused on designing scoring
functions to quantify OOD uncertainty. Set-
ting appropriate thresholds for these scoring
functions for OOD detection is challenging as
OOD samples are often unavailable up front.
Typically, thresholds are set to achieve a de-
sired true positive rate (TPR), e.g., 95% TPR.
However, this can lead to very high false posi-
tive rates (FPR), ranging from 60 to 96%, as
observed in the Open-OOD benchmark. In
safety critical real-life applications, e.g., medi-
cal diagnosis, controlling the FPR is essential
when dealing with various OOD samples dy-
namically. To address these challenges, we
propose a mathematically grounded OOD de-
tection framework that leverages expert feed-
back to safely update the threshold on the
fly. We provide theoretical results showing
that it is guaranteed to meet the FPR con-
straint at all times while minimizing the use
of human feedback. Another key feature of
our framework is that it can work with any
scoring function for OOD uncertainty quan-
tification. Empirical evaluation of our system
on synthetic and benchmark OOD datasets
shows that our method can maintain FPR at
most 5% while maximizing TPR.

1 INTRODUCTION

Deploying machine learning (ML) models in the open
world makes them subject to out-of-distribution (OOD)
inputs: an ML model trained to classify on K classes
also encounters points that do not belong to any of the
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classes in the training data. Modern ML models, in par-
ticular deep neural networks, can fail silently with high
confidence on such OOD points (Nguyen et al., 2015;
Amodei et al., 2016). Such failures can have serious
consequences in high-risk applications, e.g., medical
diagnosis and autonomous driving. Safe deployment of
ML models in an open world setting needs mechanisms
that ensure robustness to OOD inputs. The importance
of this problem has led to the development of many
methods for OOD detection (Liang et al., 2017; Lee
et al., 2018b; Liu et al., 2020; Ming et al., 2022) which
aim to produce a score that can be used to decide on
OOD vs in-distribution (ID) for a given point. For a
detailed survey of literature in the area of generalized
OOD detection, see Yang et al. (2021b).

ID data is usually plentiful, but we do not get to see
different kinds of OOD samples before deployment.
Consequently, many works in OOD detection are largely
limited to static settings where the ID data is used to
set a threshold on the scores used for detection (Liang
et al., 2017; Liu et al., 2020; Ming et al., 2022). In these
scenarios, this is usually done by setting a threshold
that achieves a certain level of true positive rate (TPR),
such as 95%. However, this can lead to a very high false
positive rate (FPR), e.g., ranging between 60% to 96%
as observed in the Open-OOD benchmark (Yang et al.,
2022a). Furthermore, even if the ID data distribution
remains the same after deployment, the OOD data
could vary, resulting in highly fluctuating FPR. Thus,
having a small, fixed amount of OOD data collected a
priori to validate the FPR at a given threshold would
not help in guaranteeing the desired FPR.

In safety critical applications, the consequences of clas-
sifying an OOD point as ID (false positive) are more
catastrophic than classifying an ID point as OOD (false
negative). For example, in the medical diagnosis of
brain scans, when the system is in doubt it is better
to classify a scan as OOD and defer the decision to
human experts rather than for the ML model to give it
an ID label i.e., predicting an in-distribution disease or
classifying it as a normal scan. Therefore, safely using
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Figure 1: Illustration of OOD detection with human-in-the-loop with FPR control. In this example, the ID data is of
brain scans of normal people and those with Alzheimer’s disease. The OOD data could be anything other than these, e.g.
brain scans of patients with some other diseases.

ML models in such applications requires systems guar-
anteeing that the FPR is below a certain acceptable
rate, e.g., FPR below 5%.

Furthermore, it is difficult to anticipate or collect the
exact type of OOD data that the system can encounter
during deployment. Thus it is crucial that such systems
adapt to the OOD data while controlling the FPR.
Motivated by these challenges we pose the following
goal for safe OOD detection.

Goal: Develop a human-in-the-loop out-of-
distribution detection system that has guaranteed
false positive rate control while minimizing the
amount of human intervention needed.

Our Contributions. Toward this goal, we make the
following contributions:

1. Human-in-the-loop OOD detection frame-
work. We propose a novel mathematically grounded
framework that incorporates expert human feedback
to safely update the OOD detection threshold, en-
suring robustness to variations in OOD data encoun-
tered after deployment. Our framework can be used
with any scoring function.

2. Guaranteed FPR control. For stationary set-
tings, we provide theoretical guarantees for our
framework on controlling FPR at the desired level
at all times and also provide a bound on the time
taken to reach a given level of optimality. Using the
insight from this analysis, we also propose an ap-
proach for settings with change points that reduces
the duration of violation of FPR control.

3. Empirical validation on benchmark datasets.
We evaluate our framework through extensive sim-
ulations both in stationary and distribution shift
settings. Through experiments on benchmark OOD
datasets in image classification tasks with various
scoring functions, we demonstrate the effectiveness
of our proposed framework.

We emphasize that our aim is to develop a framework

that can use any scoring function and safely adapt the
threshold on the fly to enable the safe deployment of ML
models. Therefore, our work is complementary to works
that develop scoring functions for OOD detection.

2 HUMAN-IN-THE-LOOP OOD
DETECTION

We propose a human-in-the-loop OOD detection system
(Figure 1) that can work with any ML inference model
and scoring function for OOD detection. We begin
by describing the problem setting and then discuss
each component of our proposed system in detail. See
Algorithm 1 for step-by-step pseudocode.

2.1 Problem Setting

Data stream. Let X ⊆ Rd denote the feature space
and Y = {−1, 1} denote the label space for OOD
detection with “1” denoting ID and “−1” denoting
OOD. Let the distribution of ID and OOD data be
denoted by Did and Dood respectively. Let xt ∈ X
denote the sample received at the time t. Let yt ∈
{−1, 1} denote the true label for xt with respect to ID
or OOD classification. We assume xt are independent
and drawn according to the following mixture model,
xt ∼ (1 − γ) Did + γ Dood, where γ ∈ (0, 1) is the
fraction of OOD points in the mixture. Note that Did,
Dood and γ are unknown.

Scoring function. After receiving data point xt, the
system uses a given scoring function, g : X 7→ S ⊆ R,
to compute a score quantifying the uncertainty of the
point being ID or OOD. Our system is designed to
work with any scoring function based OOD uncer-
tainty quantification. Let st = g(xt) denote the score
computed for point xt. To be consistent across vari-
ous scoring functions, let a higher score indicate ID
and a lower score indicate OOD points. After com-
puting score st the system needs to decide whether
xt is OOD or ID, it is done using a threshold-based
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Figure 2: FPR (λ⋆) = α ←→ CDFDout
(λ⋆) = 1 − α.

Optimal λ⋆ for the optimization problem (P1) with α = 0.05

and xt
i.i.d∼ 0.7 Din + 0.3 Dout, where Din is N (4, 1) and

Dout is N (0, 1).

classifier hλ : R 7→ {−1,+1} parameterized with
λ ∈ Λ ⊆ R: hλ(g(x)) = sign(g(x) − λ). Here we
assume Λ = (Λmin,Λmax).

FPR and TPR. The population level FPR and TPR
for any λ ∈ Λ are defined as follows,

FPR(λ) = Ex∼Dood
[1{g(x) > λ}] and

TPR(λ) = Ex∼Did
[1{g(x) > λ}].

Note that the cumulative distribution function (CDF)
of Dood, CDFDood

(λ) = Ex∼Dood
[1{g(x) ≤ λ}]. There-

fore, FPR(λ) = 1−CDFDood
(λ). Similarly, TPR(λ) =

1 − CDFDid
(λ). Since the CDF of any distribution

is a monotonic function, both the FPR and TPR are
monotonic in λ.

Expert human feedback. Our goal is to tackle criti-
cal applications where a human expert examines the
samples that are declared as OOD (instead of the ML
model making automatic predictions on them). The
feedback obtained from the human expert can be used
to safely update the OOD detection threshold at each
time step, λt, so that the FPR is maintained below the
desired rate of α. One can trivially control FPR by
setting λt = Λmax, i.e., always getting human feedback.
This would of course be too expensive and defeat the
purpose of using an ML model in the first place. There-
fore, in addition to controlling the FPR, we aim to
minimize the human feedback solicited by the system.
In an ideal system, the points declared as ID are di-
rectly classified by the ML model, and only the points
declared as OOD are examined by human expert. Thus,
minimizing human feedback is equivalent to maximiz-
ing the TPR. This can be done by setting the threshold
as, λt := arg maxλ TPR(λ) subject to FPR(λ) ≤ α.
Since the TPR is monotonic in λ, we can re-write this
further as follows,

λ⋆t := arg min
λ∈Λ

λ, s.t. FPR(λ) ≤ α. (P1)

The optimal threshold, denoted by λ⋆, is the smallest

λ such that FPR(λ⋆) = α = 1 − CDFDout(λ
⋆) (see

Figure 2). When the distribution of the OOD points,
Dood, is not changing, then setting λ⋆t = λ⋆ for all t
would be the optimal solution. Note that, changing the
mixture ratio γ, or the distribution of the ID points
Did does not affect the value of the optimal threshold.
As we do not have access to the true FPR and TPR
values, we cannot solve the optimization problem (P1).
Instead, we have to estimate the threshold at time t,
denoted by λ̂t, using the observations until time t.

2.2 Adaptive Threshold Estimation

Ideally, we want to avoid human feedback for points
that are determined as ID by the system, i.e., with a
score greater than λ̂t. However, in order to have an
unbiased estimate of the FPR and to detect potential
changes in the distribution of OOD samples and there-
fore change in true FPR, we obtain human feedback
with a small probability p for points predicted as ID by
the system. We refer to this as importance sampling.

FPR estimation and adapting the threshold. At

each time t, we observe xt
i.i.d∼ (1− γ)Did + γDood, and

st = g(xt) is the corresponding score. If st ≤ λ̂t−1,

where λ̂t−1 is the threshold determined in at time t−1,
then it is considered an OOD point and hence gets a
human label for it and we get to know whether it is
in fact OOD or ID. If st > λ̂t−1, then xt is considered
an ID point and hence gets a human label only with
probability p. So, we get to know whether it is truly ID
or not with probability p. Now we have to update the
threshold, λ̂t, such that the FPR(λ̂t) ≤ α, by finding
the minimum λ that satisfies this constraint in order
to maximize the TPR.

Our approach is based on using the feedback on the
samples that are examined by human experts till time
t to construct an unbiased estimator of FPR(λ) (see
Equation 3). We also construct an upper confidence
interval for the estimated FPR(λ) that is valid at all
thresholds λ ∈ Λ and for all times simultaneously with
high probability (see Equation 2). This enables us to
optimize for λ such that the upper bound on the true
FPR(λ) is at most α at each time t and thus safely

update the threshold λt. Let S
(o)
t = {s(o)1 , . . . s

(o)

N
(o)
t

}
denote the scores of the points that have been truly
identified as OOD from human feedback so far, and

I
(o)
t be the corresponding time points. We estimate the
FPR as follows,

F̂PR(λ, t) :=
1

N
(o)
t

∑
u∈I

(o)
t

Zu(λ), (1)
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Figure 3: Illustration of the confidence interval defined in eq. (2) on FPR and their effect on threshold estimation. As the

system receives more OOD samples the confidence intervals will shrink and lead to better thresholds safely (λ̂t ≥ λ⋆).

Zu(λ) :=


1(s

(o)
u > λ), if s

(o)
u ≤ λ̂u−1

1
p1(s

(o)
u > λ), w.p. p if s

(o)
u > λ̂u−1

0, w.p. 1− p if s
(o)
u > λ̂u−1

.

We show that our estimator for the FPR is unbiased
(the proof is deferred to the Appendix A.2).

Lemma 1. Let p > 0, F̂PR(λ, t) as defined in eq. (3)
is an unbiased estimate of the true FPR(λ), i.e.,

E[F̂PR(λ, t)] = FPR(λ).

Algorithm 1 Human in the Loop OOD Detection

Input: FPR threshold α , sampling probability p ∈
(0, 1), Scoring function g : X 7→ R,

1: S0 = Φ, λ̂0 =∞
2: for t = 1, 2, . . . do
3: Receive data point xt ; st = g(xt)

4: if st ≤ λ̂t−1 then lt = 1
5: else lt ∼ Bernoulli(p)
6: end if
7: if lt = 1 then
8: yt = GetExpertLabel(xt)
9: St = St−1 ∪ {(st, yt)}

10: end if
11: λ̂t := arg min

λ∈Λ
λ s.t. F̂PR(λ, t) +ψ(t, δ) ≤ α

12: if lt = 1 then Output yt
13: else Output ŷt = sign(st − λ̂t)
14: end if
15: end for

Finding threshold using a UCB on FPR. We
propose using our estimated FPR with an upper confi-
dence bound (UCB), which we will describe soon, to
obtain the following optimization problem (P2),

λ̂t := arg min
λ∈Λ

λ s.t. F̂PR(λ, t)+ψ(t, δ) ≤ α, (P2)

where the term ψ(t, δ) is a time-varying upper confi-
dence which is simultaneously valid for all λ for all

time with probability at least 1 − δ for any given
δ ∈ (0, 1). The minimization problem can be solved in
many ways. We use a binary search procedure where
we search over a grid on (Λmin,Λmax) with grid-size
ν. The procedure searches for a smallest λ such that

F̂PR(λ, t)+ψ(t, δ) ≤ α. It uses eq. (3) to compute the
empirical FPR at various thresholds and the confidence
interval ψ(t, δ) given in eq. (2). Details of the binary
search procedure are in the Appendix A.3.

Upper confidence bound (UCB). Our algorithm
hinges on having confidence intervals on the FPR that
are valid for all thresholds and for all times simultane-
ously. To construct such bounds, we use the confidence
bounds based on Law of Iterated Logarithm(LIL) of
(Khinchine, 1924). We note that at each time step
t, whether the sample xt gets human feedback or not
depends on the previous threshold λ̂t−1 which is a
function of data up to time t− 1 and the importance
sampling. Therefore, the samples used to estimate the
FPR are dependent which prevents direct application
of known results that are developed for i.i.d. sam-
ples (Howard and Ramdas, 2022). We build upon the
LIL bounds for martingales (Balsubramani, 2015) and
derive a confidence interval bound that is valid in our
setting, which is given by the following equation,

ψ(t, δ) :=

√√√√ 3ct

N
(o)
t

[
2 log log

(3ctN (o)
t

2

)
+ log

(2L
δ

)]
,

(2)

where ct = 1 − βt + βt

p2 , βt =
N

(o,p)
t

N
(o)
t

and N
(o,p)
t is the

number of points sampled using importance sampling
until time t and ν ∈ (0, 1) is a discretization parameter
set by the user, L = (Λmax − Λmin)/ν.

3 THEORETICAL GUARANTEES

We want three provable properties for our approach.
First, it must have guaranteed FPR control—the safety
property we set out to ensure. In addition, we want to
show a bound on the number of streamed observations
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(i.e., the time) taken to reach a point where every point
does not need human feedback to ensure safety. Finally,
we wish to have a notion of optimality, and a bound on
the number of observations before it is reached. In this
section, we provide a result that provides all of these
properties under the following assumptions: (i) we are
in the stationary setting, i.e., the distributions do not
change over time, and (ii) the score distributions for
the ID and OOD samples have sub-Gaussian tails. To
quantify how close to the optimal operating point the
system is at any given time, we define the following
notion of η-optimality.

Definition 1. (η-optimality) For any η > FPR(λ∗)−
limϵ→0+ FPR(λ∗+ϵ), the system is said to be operating
in the η-optimal regime after some time point Tη, if

FPR(λ∗)− FPR(λ̂t) ≤ η for all t ≥ Tη.

Using the estimated FPR in eq. (3) and the anytime
valid confidence intervals on the FPR at all thresh-
olds we obtained in eq. (2), we provide the following
guarantees for Algorithm 1.

Theorem 1. Let α, δ, p, γ ∈ (0, 1). Let xt
i.i.d∼ (1 −

γ)Did + γDood and let ct = 1 − βt + βt

p2 , βt =
N

(o,p)
t

N
(o)
t

where N
(o,p)
t is the number of OOD points sampled

using importance sampling until time t and N
(o)
t is the

total number of OOD points observed till time t. Let

n0 = min{u : cuN
(o)
u ≥ 173 log( 8δ )} and t0 be such

that N
(o)
t0 ≥ n0. If Algorithm 1 uses the optimization

problem (P2) to find the thresholds with the upper con-

fidence term ψ(N
(o)
t , δ/2) given by eq. (2), then there

exist constants C1, C2, C3 > 0 such that with probability
at least 1− δ,
1. Controlled FPR. For all t ≥ t0, FPR(λ̂t) ≤ α.
2. Time to reach feasibility. The algorithm will

find a feasible threshold, λ̂t such that F̂PR(λ̂t) +

ψ(N
(o)
t ) ≤ α, for all t ≥ max(t0, Tf ) , where,

Tf = 2C1

γα2 log
(

4C2

δ log(C3

α )
)
+ 1

γ2 log(
4
δ ).

3. Time to reach η−optimality. For all t ≥
max(t0, Tη-opt), λ̂t satisfy the η-optimality condi-

tion in definition 1, when F̂PR(λ̂Tη-opt
) ∈ [α−η/2, α]

and Tη-opt =
8C1

γη2 log
(

4C2

δ log( 2C3

α )
)
+ 1

γ2 log(
4
δ ).

We discuss the results below and defer the proofs to
the Appendix A.2.

Controlled false positive rate. We design our frame-
work to safely update the threshold. Our method guar-
antees that λt ≥ λ⋆ at all times, i.e., we approach
the optimal λ⋆ from above and thus never violate the
FPR constraint. This is crucial in applications where
accurately controlling the FPR is essential.

Time to reach feasibility. Our algorithm begins with
setting λ0 = Λmax, and therefore obtaining human feed-
back on all the points until the time point when we
can find a threshold that enables us to safely declare
scores above it as ID (Fig 3b). Our analysis provides
an upper bound on the time taken by the algorithm to
find such a safe, λ̂t < Λmax such that, FPR(λ̂t) ≤ α.
We call this time as time to reach feasibility, Tf , and it
is the time step at which a sufficient number of obser-

vations N
(o)
Tf

is obtained so that the confidence interval

ψ(Tf , δ/2) ≤ α. It is inversely proportional to the level
α and the fraction of OOD samples γ.

Time to reach η-optimality. As the time proceeds
and the confidence intervals around the estimated FPR
at different thresholds start to get smaller, the esti-
mated safe threshold λ̂t starts to approach λ⋆ (Fig 3c).
If the estimated FPR at time step Tη-opt, denoted

as F̂PR(λ̂Tη-opt), is within the range [α − η/2, α] and
the confidence interval ψ(Tη-opt, δ/2) ≤ η/2, then for
all time points after Tη-opt the algorithm will find a

λ̂t that satisfies the η-Optimality condition. In this
regime, the algorithm operates in a state where the dif-
ference between the FPR at the true optimal threshold,
FPR(λ∗) = α, and the FPR at the estimated threshold

FPR(λ̂t), is bounded by η. Our analysis provides a
bound on the time Tη-opt which is the time point when

the number of acquired OOD samples N
(o)
Tη-opt

becomes

at least 4C1

η2 log
(

2C2

δ log( 2C3

η )
)
. It is inversely propor-

tional to the closeness to optimality η and the fraction
of OOD samples γ.

4 EMPIRICAL EVALUATION

We evaluate our method to verify the following claims:

C1. Compared to non-adaptive baselines, our approach
achieves lower FPR while maximizing the TPR.
C2. In the stationary setting, our adaptive method
based on the LIL upper confidence bound satisfies the
FPR constraint at all times and produces high TPR.
C3. The proposed framework is compatible with any
OOD scoring functions.
C4. Our method continues to work even in distribution
shift settings with a simple adaption using the windowed
approach described in Section 4.2.

Baselines. We compare our method against the non-
adaptive baseline popularly used for OOD detection.
This non-adaptive method (TPR-95) finds a threshold
achieving 95% TPR using the ID data and uses it at
all times. For our adaptive method, we consider three
choices of confidence intervals i) No-UCB: does not
use any confidence intervals, ii) LIL: Uses confidence
interval from eq. (LIL-Heuristic), and iii) Hoeffding:
uses the confidence intervals from Hoeffding’s inequal-
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(a) No window, no distribution shift. (b) 5K window, no distribution shift

Figure 4: Results on the synthetic data with stationary distributions, γ = 0.2, and using no window. Each method is
repeated 10 times. The mean and standard deviation are shown.

Figure 5: Results on the synthetic data with stationary
distributions and different mixing ratios γ.

ity (Hoeffding, 1963). The confidence intervals from
Hoeffding inequality are not valid simultaneously for
all times but are a reasonable choice for a practitioner.

ψ̃(t, δ) = C1

√
ct

N
(o)
t

(
log log

(
C2ctN

(o)
t

)
+ log

(C3

δ

))
.

(LIL-Heuristic)

The theoretical LIL bound in eq. (2) has constants that
can be pessimistic in practice. We get around this by
using a LIL-Heuristic bound which has the same form
as in eq. (2) but with different constants. We consider
the form in eq. (LIL-Heuristic). We find the constants
C1, C2, C3 using a simulation on estimating the bias of
a coin with different constants and picking the ones so
that the observed failure probability is below 5%. We
use C1 = 0.5 and C2 = 0.75, C3 = 1. We use α = 0.05,
δ = 0.2, and importance sampling probability p = 0.2
through all the empirical evaluations. More details are
available in the Appendix A.4.1 and code is provided1.

Synthetic data setup. We simulate the OOD and
ID scores using a mixture of two Gaussians Nid(µ =
5.5, σ = 4) and Nood(µ = −6, σ = 4). We randomly
draw 100k samples with γ = 0.2 (see Figure 4).

1https://github.com/2454511550Lin/
TameFalsePositives-OOD

Real data setup. We use ID and OOD datasets
and scoring functions from the OpenOOD benchmark
(Yang et al., 2022a). Here we show the results on
CIFAR-10 (Krizhevsky et al., 2009) as an ID dataset
and show the results on CIFAR-100, and Imagenet-1K
(Deng et al., 2009) in the Appendix A.4. To verify C3,
we use various scoring functions: ODIN (Liang et al.,
2017), Mahalanobis Distance (Lee et al., 2018b), Energy
Score (Liu et al., 2020), SSD (Sehwag et al., 2021), VIM
(Wang et al., 2022), and KNN (Sun et al., 2022) scores
for the evaluation. Due to space limitation, we present
results for the KNN (Sun et al., 2022) score here. For
more details on the datasets, scores, and results on the
rest of the scores please see the Appendix A.4.

4.1 Stationary Distributions Setting

In the stationary setting the data distributions do not
change over time. We use this setting to verify our
theoretical claims as they are valid in such settings. We
perform the experiments to verify claims C1 and C2
on synthetic and real data. See Figures 4(a) and 10(a)
for the results. We make the following observations: (i)
We see that the non-adaptive method (TPR-95) with
the fixed threshold has a high FPR at all times and
violates the FPR constraint by a big margin. On the
other hand, the adaptive methods improve with time.
(ii) We see that not using a UCB leads to violation of
FPR constraints and the methods with LIL-Heuristic,
Hoeffding based intervals are able to maintain the FPR
below the user given threshold 5%. Moreover, all the
methods improve as they acquire more samples with
time and eventually reach very close to the optimal
solution. We note that our method (LIL-heuristic) is
faster in this regard than while maintaining safety.

Time to reach feasibility and optimality. In our
theoretical results, we derived bounds on the time to
reach feasibility (Tf ) and the time to reach η-optimality
denoted by Tη−opt. These times are inversely propor-
tional to the mixing ratio γ and the optimality level η.
To verify this we run the LIL method on the synthetic
data setup with different values of γ and observe Tf

https://github.com/2454511550Lin/TameFalsePositives-OOD
https://github.com/2454511550Lin/TameFalsePositives-OOD
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(a) Distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 6: Effect of using various window sizes in synthetic data experiments. The distribution shift starts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 7: Results with the KNN scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

γ Tf
Tη−opt

η = 1.0% η = 1.5% η = 2.0% η = 2.5%

2.5%
14,167 93,011 71,089 70,559 37,534
±602 ±27, 387 ±25, 654 ±35, 056 ±9302

5%
7,054 53,971 47,143 39,864 32,473
±301 ±20, 816 ±24, 004 ±22, 328 ±20, 262

10%
3,549 50,748 35,517 26,435 17,312
±200 ±33, 947 ±22, 131 ±14, 361 ±7, 757

20%
1,770 40,240 28,943 9,004 6,500
±72 ±37, 751 ±31, 138 ±3, 383 ±2, 495

Table 1: Time to reach feasibility Tf and optimality Tη−opt

in the stationary setting for different η and mixing ratios γ.

(corresponding to α = 5%) and Tη−opt. We report
the mean and std. deviation of Tf and Tη−opt over 10
runs with different random seeds (see Table 1). We see
both Tf and Tη−opt decrease as γ increases and Tη−opt

is also inversely proportional to the optimality level.
The corresponding FPR and TPR trends for each γ
are shown in Figure 5. These trends also corroborate
our understanding of the effect of γ on the time for
feasibility and optimality.

4.2 Distribution Shift Setting

We now proceed to investigate the case where the
distributions change at a specific time point. One
of the motivations for the proposed system is to be
able to adapt to the variations of the OOD data. As
long as Dood does not change, any changes in the Did

or the mixing ratio γ do not affect the true FPR and
therefore the optimal λ⋆. However, the true FPR does
get affected when Dood changes. When there is a change

in Dood, estimating the FPR using all the acquired
samples so far heavily biases the estimate towards
scores that are far behind in time from the previous
Dood. This leads to a long delay before our unbiased
estimate of FPR can catch up to the change.

Windowed approach. To overcome this challenge,
we propose a sliding window-based approach with the
adaptive methods. The user can set a window size
Nw > 0 and the system will estimate the FPR and
the confidence intervals using only the most recent Nw

samples that are determined as OOD by human feed-
back. This allows the system to more quickly adapt
the threshold that is well aligned with the new distri-
bution(s) of OOD samples.

Change detection. We use the following criteria to

detect change, if F̂PR(λ̂t−1, t) − ψ(t, δ) > α then it
means the OOD distribution has changed. Here the

F̂PR and ψ are computed using the samples in the
window. We use change detection only for the methods
with confidence intervals.

The window size Nw has trade-offs, i.e., using a smaller
window will enable faster change detection and adapt-
ing to the new distribution but imposes limitations on
the optimality as the smallest width of the confidence
interval possible is inversely proportional to the window
size. We verify claim C4 and study these trade-offs
using experiments on synthetic and real data.

For the synthetic data, we use the same ID and OOD
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Figure 8: Box plot of change detection times with
different window sizes on synthetic data. The median and
mean are shown using solid and dashed lines respectively.

distribution as above till t = 50k and change the OOD
distribution to Nood(µ = −5, σ = 4) at time t = 50k.
In the real data setting, we use the CIFAR-10 as ID
and a mixture of MNIST, SVHN, and Texture datasets
as OOD till t = 50k and a mixture of TinyImageNet,
Places365, CIFAR-100 as OOD after t = 50k. We run
TPR-95, and adaptive methods LIL, and Hoeffding in
these settings with different choices of window sizes
with 10 repeated runs using different random seeds and
show the mean and std. deviations of the FPR and
TPR in Figures 6 and 7. We find that the windowed
approach adapts more quickly compared to the method
without a window (see Figures 6(a),6(c)).

Effect of window size. The results with various win-
dow sizes are shown in Figures 6(b), 6(c) on synthetic
data and in Figures 10(b), 10(c) on real data. We also
show the box plots of change detection times with LIL
in Figure 8. As expected, we see that with smaller win-
dow size the change is detected earlier and the method
is able to adapt faster. We also see that while smaller
window helps in faster adaption but limits how close
to the optimal TPR is achieved.

To showcase the effect of window-based approach
in stationary setting, we run the methods with a
window size of 5k in the fixed distribution setting (see
Figure 4(b)). We observe similar behavior to the case
without a window but with higher variance as the
confidence intervals are limited by the window size.

Restart after change detection. In the previous
experiments the algorithm kept using all the samples
in its window even after detecting the change. The
window can contain samples from the previous distribu-
tion till some time which leads to prolonged violation
of FPR constraint. In safety critical applications one
might apply a conservative approach i.e., restart the
algorithm after detecting the change by emptying the
window and resetting the threshold to Λmax. We run
the LIL based method with this variation using dif-
ferent window sizes and show the FPR and TPR of a
median trend in Figure 4.2. To get the median trend

we run the algorithm with 10 random seeds and pick
the FPR, and TPR trends corresponding to the run
having the median change detection time. We see that
the FPR and TPR drop to 0 immediately after the
change is detected and then the method recovers grad-
ually. The variation without a window took a longer
time to detect the change and hence lags behind the
window-based methods in approaching optimality after
restart. With a 5K window, it detected the change
earlier but due to the small window, it is not able to
reach optimality. The one with a window size of 10k is
a good trade-off as it is neither too late in detecting the
change nor lags too far in approaching the optimality.

5 RELATED WORKS

Recent years have seen significant advancements in
OOD detection. Surveys by Salehi et al. (2022) and
Yang et al. (2022b) compare outlier, anomaly, and
novelty detection, framing generalized OOD detection.
We explore related research in these domains.

Out-of-Distribution detection. Many recent works
proposed methods to quantify a score (uncertainty)
that can separate OOD and ID data points. These
include confidence-based scores (Bendale and Boult,
2015; Hendrycks and Gimpel, 2017), Temperature scal-
ing as used in ODIN (Liang et al., 2018), Energy-based
scores (Liu et al., 2020; Wang et al., 2021; Wu et al.,
2023). With-in the vein of post-hoc methods ReACT
(Sun et al., 2021) and ASH (Djurisic et al., 2023) em-
ploy light-weight perturbations to activation functions
at inference time. VIM (Wang et al., 2022) generates
a virtual OOD class logit and matches it with original
logits using constant scaling. GradNorm (Huang et al.,
2021) GradOrth (Behpour et al., 2023) use gradient
information. Distance-based methods detect samples
as OOD if they are relatively far away from ID data.
These include minimum Mahalanobis distance from
class centroids (Lee et al., 2018b; Ren et al., 2023),
distances between representations learned using self-
supervised learning (Tack et al., 2020; Sehwag et al.,
2021), non-parametric KNN distance (Sun et al., 2022)
and distances on Hyperspherical embeddings (Ming
et al., 2022). Density-based approaches employ proba-
bilistic models to characterize the density of ID data,
positing that OOD points should appear in regions of
low density. Some of the notable works in this vein are
(Bishop, 1994), Nalisnick et al. (2019) likelihood ratios
(Ren et al., 2019), normalizing flows (Kirichenko et al.,
2020), invertible networks (Schirrmeister et al., 2020),
input complexity (Serrà et al., 2020), confusion log
probabilities (Winkens et al., 2020), likelihood regret
scores for variational autoencoders (Xiao et al., 2020).

Training-time regularization addresses OOD de-
tection by reducing the confidence or increasing the



Taming False Positives in OOD Detection with Human Feedback

energy on the OOD points using auxiliary OOD data
for model training (Bevandić et al., 2018; Geifman
and El-Yaniv, 2019; Mohseni et al., 2020; Jeong and
Kim, 2020; Wei et al., 2022; Yang et al., 2021a; Lee
et al., 2018a; Hendrycks et al., 2019; Katz-Samuels
et al., 2022). OOD data can be highly diverse and it is
hard to collect or anticipate the kind of OOD data the
model will see after deployment. Moreover, if there is
some change in OOD data these methods will require
expensive retraining of the model.

Controlled false OOD detection rate (FDR).
PAC-style guarantees on the OOD detection aiming to
minimize false detections of OOD points are provided
in the supervised settings (Liu et al., 2018). There is an
emerging line of works on OOD detection using Confor-
mal Prediction (CP) (Vovk et al., 2005). Various tech-
niques use non-conformity measures (NCMs) to assess
alignment with the training dataset. Examples of pre-
viously proposed NCMs include those based on random
forests, ridge regression, support vector machines (Vovk
et al., 2005), k-nearest neighbors (Vovk et al., 2005;
Papernot and Mcdaniel, 2018), and VAE with SVDD
(Cai and Koutsoukos, 2020). Conformal Anomaly De-
tection (ICAD) (Laxhammar and Falkman, 2011, 2015)
combines statistical hypothesis testing, NCM scores
and inductive conformal anomaly detection (ICAD)
(Laxhammar and Falkman, 2015)for OOD detection.
Building upon ICAD, the iDECODe method (Kaur
et al., 2022) introduces a novel NCM measure for OOD
detection. Bates et al. (2023) demonstrate issues with
conformal p-values under the ICP framework, propos-
ing a technique based on high-probability bounds to
compute calibration-conditional conformal p-values.

We note the following key differences: (i) The definition
of inliers (ID) as positives and outliers (OOD) as neg-
atives in our work is the opposite of these works. Thus,
controlling FPR in these works translates to guarantee-
ing a lower bound on TPR in our setting rather than
controlling FPR (rate of predicting true OOD as ID).
These works are for offline settings – fixed sets of inliers
and calibration set are used to learn the inference rule
which is used to make predictions on a test set such
that the fraction of true ID predicted as OOD remains
below a desired rate. Our guarantees on FPR are valid
for all time points (∀t > 0), while the paper provides
guarantees for detection in a given test set of points.

OOD detection with test-time optimization.
MEMO (Zhang et al., 2022) uses multi-head models
such that the trained model can be adapted with test
time distribution shift. ETLT (Fan et al., 2022) train
a separate linear regression model during test time
to calibrate the OOD scores as OOD scores. Other
works such as (Wang et al., 2020) and (Iwasawa and
Matsuo, 2021) address the issue in a post-hoc manner

without altering the trained model. We consider these
methods complementary to our work as our framework
can adopt the calibrated OOD scores and adapt the
threshold safely with FPR control.

Generalized OOD detection is a classical problem that
has drawn several promising solutions from researchers
across diverse fields including databases, networks, etc.
For a comprehensive treatment of the topic, we refer
the reader to the book on outlier analysis (Aggarwal,
2017) and recent surveys on ood detection (Yang et al.,
2021b, 2022a; Salehi et al., 2022).

Time uniform confidence sequences also known as
any time valid confidence sequences are confidence in-
tervals designed for streaming data settings, providing
time-uniform and non-asymptotic coverage guarantees
(Darling and Robbins, 1967; Lai, 1976). Using these se-
quences gets rid of the requirement of selecting sample
size (or stopping time) ahead of time. Due to these nice
properties, they have been used in various applications
including A/B Testing (Johari, 2015; Maharaj et al.,
2023), Multi-armed bandits (Jamieson et al., 2014;
Szorenyi et al., 2015). Iterated-logarithm confidence
sequences for best-arm identification using mean esti-
mation are utilized in (Jamieson et al., 2014; Kaufmann
et al., 2016; Zhao et al., 2016). Similar to (Darling
and Robbins, 1968), (Szorenyi et al., 2015) include a
confidence sequence valid over quantiles and time, de-
rived via a union bound applied to the DKW inequality
(Dvoretzky et al., 1956; Massart, 1990). (Howard and
Ramdas, 2022) improve the upper bounds of (Szorenyi
et al., 2015) by replacing the logarithmic factor with
an iterated-logarithm one and improving the constants.
Similar to (Howard and Ramdas, 2022), in our setting,
we require confidence sequences valid uniformly over
all times and quantiles. However, their results are valid
when samples are drawn i.i.d. and this assumption
breaks in our setting due to importance sampling. In-
terestingly, despite this issue, we obtain a martingale
sequence in our setting and build upon the work of
(Balsubramani, 2015) to obtain confidence sequences
valid uniformly over time and thresholds.

6 CONCLUSION

We presented a mathematically grounded framework for
human-in-the-loop OOD detection. By incorporating
expert feedback and utilizing confidence intervals based
on the Law of Iterated Logarithm (LIL), our approach
maintains control over FPR while maximizing the TPR.
The empirical evaluations on synthetic data and image
classification tasks demonstrate the effectiveness of our
method in maintaining FPR at or below 5% while
achieving high TPR. Our theoretical guarantees are
valid for stationary settings. We leave the extension to
non-stationary settings as future work.
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A Appendix

The appendix is organized as follows. We summarize the notation in Table 2. Then we give the proof of the
main theorem (Theorem 2) and the proofs of supporting lemmas in Section A.2. Then we provide additional
experiments and insights from them in Section A.4.

A.1 Glossary

The notation is summarized in Table 2 below.

Symbol Definition

X feature space.
Y label space, {+1,−1}, +1 for ID and -1 for OOD .
Did,Dood distributions of ID and OOD points.
γ mixing ratio of OOD and ID distributions.
λ threshold for OOD classification.
FPR(λ) population level false positive rate with threshold λ.
TPR(λ) population level true positive rate with threshold λ.

F̂PR(λ, t) empirical FPR at time t, adjusted to account for importance sampling (see eq. (3)).
λ∗ the optimal threshold for OOD classification s.t. FPR(λ) ≤ α and TPR(λ) is maximized.

λ̂t the estimated threshold at round t.
xt, yt sample and the true label at time t .
g OOD uncertainty quantification (score) function.

s
(o)
u score of uth OOD sample.

i
(o)
u indicator variable denoting whether s

(o)
u was importance sampled or not.

N
(o)
t number of OOD points till time t.

N
(o,p)
t number of OOD points sampled using importance sampling until time t.

βt it is equal to N
(o,p)
t /N

(o)
t .

p probability for importance sampling.
δ failure probability.
α user given upper bound on FPR that the algorithm needs to maintain.

η the algorithm is in η−optimality if close FPR(λ∗)− FPR(λ̂t) ≤ η.
Λmin,Λmax the minimum and maximum scores(thresholds) considered by the algorithm.
ν discretization parameter for the interval [Λmin,Λmax] set by the user.
ψ(t, δ) LIL based confidence interval at time t.

Table 2: Glossary of variables and symbols used in this paper.

A.2 Proofs

Summary of the setting. At each time t, we observe xt
i.i.d∼ (1 − γ)Did + γDood, and st = g(xt) is the

corresponding score. If st ≤ λ̂t−1, then it is considered an OOD point and hence gets a human label for it and we
get to know whether it is in fact OOD or ID. If st > λ̂t−1, then it is considered an ID point and hence gets a
human label only with probability p. So, we get to know whether it is truly ID or not with probability p. Now
we have to update the threshold, λ̂t, such that the FPR(λ̂t) ≤ α for all t, while trying to maximize TPR(λ̂t).
Our approach is based on constructing an unbiased estimator of FPR(λ) using the OOD samples received till
time t and in conjunction with confidence intervals for FPR(λ) for at all thresholds λ ∈ Λ that is valid for all
times simultaneously. Together, at each time t, these give us a reliable upper bound on the true FPR(λ) for all λ

enabling us to find the smallest λ such that the upper bound on FPR(λ) is at most α. Let S
(o)
t = {s(o)1 , . . . s

(o)

N
(o)
t

}
denote the scores of the points that have been truly identified as OOD points from human feedback and I

(o)
t be

the corresponding time points. We estimate the FPR as follows,

F̂PR(λ, t) =
1

N
(o)
t

∑
u∈I

(o)
t

Zu(λ), where Zu(λ) :=


1(s

(o)
u > λ), if s

(o)
u ≤ λ̂u−1

1
p1(s

(o)
u > λ), w.p. p if s

(o)
u > λ̂u−1

0, w.p. 1− p if s
(o)
u > λ̂u−1

. (3)

14
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Proof outline. To obtain the guarantees in Theorem 2 we need confidence intervals ψ(t, δ) that are simultaneously
valid with high probability for the FPR estimates at all time points and all thresholds. There is a rich line of
work that provides tight confidence intervals valid for all times based on the Law of Iterated Logarithm (LIL)
(Khinchine, 1924; Kolmogorov, 1929; Smirnov, 1944). Non-asymptotic versions of LIL have been proved in various
settings e.g. multi-armed bandits (Jamieson et al., 2014) and for quantile estimation (Howard and Ramdas, 2022).
Roughly speaking, these bounds provide confidence intervals that are O(

√
log log(t)/t and are known to be tight.

However, most of them assume the samples to be i.i.d. In our setting, our treatment of observing the human
feedback is dependent on whether the score is above or below λ̂t−1 which itself is estimated using all the past
data which creates dependence and prevents us from utilizing results developed for i.i.d. samples (Howard and
Ramdas, 2022). The main technical challenge is to show that the upper confidence bound in eq. (2) holds for all
time and all thresholds with dependent samples used in estimating the FPR in eq. (3). We handle this by first
showing that there is a martingale structure in our estimated FPR (eq. (3)). We then exploit this structure by
using LIL results for martingales (Balsubramani, 2015). A limitation of (Balsubramani, 2015) is that it can only
provide us confidence intervals valid for FPR estimate for a given threshold λ. However, we need intervals that
are simultaneously valid for all λ as well. Building upon the work (Balsubramani, 2015) we derive confidence
intervals that are simultaneously valid for all t and finitely many thresholds. Eq. (2) shows the ψ(t, δ) we obtain.

Next, we show that the above estimator F̂PR(λ, t) is indeed an unbiased of false positive rate FPR(λ).

Lemma 2. Let p > 0, F̂PR(λ, t) as defined in eq. (3) is an unbiased estimate of the true FPR(λ), i.e.,

E[F̂PR(λ, t)] = FPR(λ).

Proof. Let i
(o)
t be the indicator variable denoting whether s

(o)
t was sampled using importance sampling (i.e.

i
(o)
t = 1) or not (i.e. i

(o)
t = 0). Denote the pair as r

(o)
t = (s

(o)
t , i

(o)
t ) for brevity. The proof is by induction. Since

the first sample is drawn without any importance sampling so, we have E
r
(o)
1

[F̂PR(λ, 1)] = FPR(λ). Now assume

that E
r
(o)
t−1,...,r

(o)
1

[F̂PR(λ, t− 1)] = FPR(λ).

E
r
(o)
t ,r

(o)
t−1,...,r

(o)
1

[F̂PR(λ, t)] = E
[ 1

N
(o)
t

∑
u∈I

(o)
t

Zu(λ)
]

= E
[Zt(λ)

N
(o)
t

+
N

(o)
t − 1

N
(o)
t

1

N
(o)
t − 1

∑
u∈I

(o)
t−1

Zu(λ)
]

= E
[Zt(λ)

N
(o)
t

+
N

(o)
t − 1

N
(o)
t

F̂PR(λ, t− 1)
]

=
1

N
(o)
t

[
E[Zt(λ)] + (N

(o)
t − 1) · E[F̂PR(λ, t− 1)]

]
=

1

N
(o)
t

[
E[Zt(λ)] + (N

(o)
t − 1) · FPR(λ)

]
=

1

N
(o)
t

[
E
r
(o)
t |λ̂t−1

[Zt(λ)] + (N
(o)
t − 1) · FPR(λ)

]
=

1

N
(o)
t

[
FPR(λ) + (N

(o)
t − 1) · FPR(λ)

]
= FPR(λ)

Having an unbiased estimator solves one part of the problem. In addition, we need confidence intervals on this
estimate that are valid for anytime and for the choices of λ considered. Due to the dependence between the
samples, we cannot directly apply similar results developed for quantile estimation in the i.i.d. setting (Howard
and Ramdas, 2022). Fortunately, part of this problem has been addressed in (Balsubramani, 2015), where they
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provide anytime valid confidence intervals when the estimators form a martingale sequence. We restate this result
in the following lemma 3 and then building upon this result, in the next lemma 4 we derive such confidence
intervals for our setting.

Lemma 3. ((Balsubramani, 2015)) Let M t be a martingale and suppose |M t−M t−1| ≤ ρt for constants {ρt}t>1,
let m0 = mint≥1 |M t|. Fix any δ ∈ (0, 1), and let t0 = min{u :

∑u
t=1 ρ

2
t ≥ 173 log(4δ )} then,

P
(
∃t ≥ t0 : |M t| ≥

√√√√3
( t∑

i=1

ρ2i

)(
2 log log

(3∑t
i=1 ρ

2
i

m0

)
+ log

(2
δ

)))
≤ δ (4)

Proof. This lemma is a restatement of theorem 4 in (Balsubramani, 2015). For proof details please see
(Balsubramani, 2015).

In the next lemma, we show that the sums of Zu(λ) form a martingale sequence, allowing us to apply the results
from the above lemma (3), and then we generalize it to all λ in some finite set.

Lemma 4. (Anytime valid confidence intervals on FPR) Let X
(o)
t = {x(o)1 , . . . x

(o)

Nt
(o)} be the samples drawn from

Dood till round t and let S
(o)
t = {s(o)1 , . . . s

(o)

Nt
(o)} be the scores of these points, let ct = 1− βt + βt

p2 , βt =
N

(o,p)
t

N
(o)
t

and

N
(o,p)
t is the number of points sampled using importance sampling until time t and ν ∈ (0, 1) is a discretization

parameter set by the user. Let Λ = {Λmin,Λmin + ν, . . . ,Λmax}. Let n0 = min{u : cuN
(o)
u ≥ 173 log( 4δ )} and t0 be

such that N
(o)
t0 ≥ n0. , then for any δ ∈ (0, 1),

P
(
∃t ≥ t0 : sup

λ∈Λ
F̂PR(λ, t)− FPR(λ) ≥ ψ(t, δ)

)
≤ δ (5)

for,

ψ(t, δ) =

√√√√ 3ct

N
(o)
t

[
2 log log

(3ctN (o)
t

2

)
+ log

(
2|Λ|
δ

)]
(6)

Proof. First, we show that we have a martingale sequence as follows,

Let Mt(λ) =
∑N

(o)
t

u=1 Zu(λ), and consider the centered random variables,

M t(λ) =Mt(λ)− E[Mt(λ)] and Zt(λ) = Zt(λ)− FPR(λ)

Let Ft be the σ−algebra of events till time t i.e. (s
(o)
1 , i

(o)
1 ), . . . , (s

(o)
t−1, i

(o)
t−1), (s

(o)
t , i

(o)
t ).

It is easy to see that E[M t] ≤ 1
p <∞ and M t is Ft-measurable for all t > 1. Further, we can see,

E
[
M t(λ)|Ft−1

]
= E[Zt(λ) +M t−1(λ)|Ft−1] = E[Zt(λ)|Ft−1] + E[M t−1(λ)|Ft−1] =M t−1(λ)

Since, E[Zt(λ)|Ft−1] = 0 and E[M t−1(λ)|Ft−1] = M t−1(λ). Thus we have that M t is a martingale sequence.
Further, we also have the following,

|M t(λ)−M t−1(λ)| ≤
{
1 if i

(o)
t = 0

1
p if i

(o)
t = 1

Let βt ∈ (0, 1) be the fraction of OOD points sampled using probability p till round t. Let N
(o)
t be the total

number of points OOD points sampled till round t and N
(o,p)
t be the points sampled from importance sampling,

then βt =
N

(o,p)
t

N
(o)
t

.
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Let ct = 1−βt+ βt

p2 . We know p and the number of points sampled with importance sampling, without importance
sampling we knowβt, ct are at time t. Applying lemma 3 we get the following result for a given λ,

P
(
∃t ≥ t0 :M t(λ) ≥

√
3
(
ctN

(o)
t

)(
2 log log

(
3ctN

(o)
t

)
+ log

(2
δ

)))
≤ δ (7)

P
(
∃t ≥ t0 : F̂PR(λ, t)− FPR(λ, t) ≥

√
3ct

N
(o)
t

(
2 log log

(
3ctN

(o)
t

)
+ log

(2
δ

)))
≤ δ (8)

Doing the union bound for the failure probability over all λ ∈ Λ, (where |Λ| <∞) gives us the result.

Our performance guarantees in the main theorem 2 are based on ψ(t, δ) becoming smaller than certain values.

In the next lemma we derive bound on N
(o)
t such that ψ(t, δ) is at most µ and use it in the proof of the main

theorem 2.

Lemma 5. Let ψ(t, δ) =

√
3ct
N

(o)
t

(
2 log log

(
3ctN

(o)
t

)
+ log

(
2|Λ|
δ

))
, and let there be a constant C0 and time T0,

such that βt ≤ C0p
2 for all t ≥ T0 (worst case T0 = 1 and C0 = 1/p2). Then ψ(t, δ) ≤ µ for any t > Tµ > T0

such that N
(o)
Tµ

= 10(C0+1)
µ2 log

(
|Λ|
δ log( 5(C0+1)

µ )
)
.

Proof. First we write a simplified form of ψ(t, δ) for all t > T0 as follows,

ψ(t, δ) =

√
3(C0 + 1)

N
(o)
t

(
2 log log

(
3(C0 + 1)N

(o)
t

)
+ log

(2|Λ|
δ

))
In the above equation we used the bound on βt ≤ C0p

2 in the equation ct = 1− βt + βt/p
2 leading to ct ≤ C0 +1,

Now, for brevity let a1 = 3(C0 + 1) and a2 = 2|Λ| and rewrite ψ(t, δ) as follows,

ψ2(t, δ) =
a1

N
(o)
t

(
2 log log

(
a1N

(o)
t

)
+ log

(a2
δ

))
≤ 2a1

N
(o)
t

(
log

(a2
δ

log
(
a1N

(o)
t

)))
We want to find N

(o)
t such that ψ2(t, δ) ≤ µ2. It is difficult to directly invert this function. To get a bound

on N
(o)
t we first assume the following form for it with unknown constants b1, b2, b3 > 0 and then figure out the

constants by simplifying ψ2(N
(o)
t ) and constraining it to be at most µ2.

Let N
(o)
Tµ

=
b1
µ2

log

(
a2
b3δ

log
(b2
µ

))

ψ2(Tµ, δ) ≤
2a1

N
(o)
Tµ

log
[a2
δ

log(a1N
(o)
Tµ

)
]

=
2a1µ

2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

log

{
a1b1
µ2

log

(
a2
b3δ

log
(b2
µ

))}]
(i)

≤ 2a1µ
2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

log

{
a1b1
µ2

log

(
a2
b3δ

b2
µ

)}]

=
2a1µ

2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

log

{
a1b1
µ2

log

(
a2b2
b3δµ

)}]
(ii)

≤ 2a1µ
2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

log

{
a1b1
µ2

a2b2
b3δµ

}]
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=
2a1µ

2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

log

{
a1b1
µ2

a2b2
b3δµ

}]

=
2a1µ

2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

log

{
a1b1a2
b3b22δ

(b2
µ

)3
}]

(iii)

≤ 2a1µ
2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

a1b1a2
b3b22δ

log

{(b2
µ

)3
}]

=
2a1µ

2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log

[
a2
δ

3a1b1a2
b3b22δ

log
(b2
µ

)]

=
2a1µ

2

b1 log
(

a2

b3δ
log

(
b2
µ

)) log [( a2b3δ
)2 3a1b1b3

b22
log

(b2
µ

)]
(iv)

≤
2a1µ

2 3a1b1b3
b22

b1 log
(

a2

b3δ
log

(
b2
µ

)) log [( a2b3δ
)2

log
(b2
µ

)]
(v)

≤
2a1µ

2 · 2 3a1b1b3
b22

b1 log
(

a2

b3δ
log

(
b2
µ

)) log [ a2b3δ log
(b2
µ

)]

=
12µ2a21b3

b22
.

The inequalities (i), (ii) follow from log(x) ≤ x for any x > 0.

The inequality (iii) comes from log(ax) ≤ a log(x) for any a > 2, x > 2. We use a = a1b1a2

b3b22δ
and x =

(
b2
µ

)3

, this

enforces the following constraints,
b2
µ
> 21/3 (9)

a1b1a2
b3b22δ

> 2 (10)

For (iv) we again use log(ax) ≤ a log(x) with a = 3a1b1b3
b22

and x =
(

a2

b3δ

)2
log

(
b2
µ

)
, this enforces the following

constraints,
3a1b1b3
b22

> 2 (11)

( a2
b3δ

)2
log

(b2
µ

)
> 2 (12)

Lastly, (v) follows by using log(xay) ≤ a log(xy) for any x > 0, a > 1, y > 1. For this we use x = a2

b3δ
and

y = log( b2µ ), leading the following constraints,

log(
b2
µ
) > 1 (13)

For ψ2(Tµ) ≤ µ2, we need
12a21b3 ≤ b22 (14)

Let b3 = 2, b1 = 10a1, b2 = 5a1 then the constraints 9,10,11,12,13 and 14 are satisfied ( when |Λ| ≥ 10 ) for any
µ ∈ (0, 1), δ ∈ (0, 1). Thus we have,

ψ(Tµ, δ) ≤ µ for NTµ
=

10(C0 + 1)

µ2
log

( |Λ|
δ

log(
5(C0 + 1)

µ
)
)

(15)



Taming False Positives in OOD Detection with Human Feedback

Lemma 6. Let the data points {xt}t≥1 be independent draws from the mixture distribution (1− γ)Did + γDood,

and N
(o)
t be the number of OOD points received till time t from this distribution, then for any δ ∈ (0, 1) for any

t ≥ Tk we have N
(o)
t ≥ k w.p. 1− δ, where Tk is given as follows,

Tk =
2k

γ
+

1

γ2
log(

1

δ
). (16)

Proof. We want to find t such that N
(o)
t ≥ k w.p. 1− δ. This is the same as finding the number of coin tosses of

a coin with bias γ so that the number of heads observed is at least k. Applying Hoeffding’s inequality gives us
the following w.p. 1− δ,

N
(o)
t ≥ γt−

√
t

2
log(

1

δ
).

Equating the r.h.s. above with k and solving for t will give us the desired bound on t. Note that it is enough to
have an upper bound on t that satisfies the following and then use that upper bound as Tk.

γt−
√
t

2
log(

1

δ
) = k.

To simplify the calculations, let c =
√

1
2 log

1
δ and let t = u2 then we have the following quadratic equation,

γu2 − cu− k = 0.

Considering the larger of the two solutions,

u =
c+

√
c2 + 4kγ

2γ
.

Using the fact that for any a, b ≥ 0,
√
a+ b ≤ √a+

√
b,

u ≤ c+
√
c2 +

√
4kγ

2γ
=

2c+ 2
√
kγ

2γ
=
c

γ
+

√
k

γ
.

Lastly, using (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R we get the following upper bound on t,

t = u2 ≤ 2c2

γ2
+

2k

γ
=

2k

γ
+

1

γ2
log(

1

δ
).

Theorem 2. Let α, δ, p, γ ∈ (0, 1). Let xt
i.i.d∼ (1 − γ)Did + γDood and let ct = 1 − βt + βt

p2 , βt =
N

(o,p)
t

N
(o)
t

where

N
(o,p)
t is the number of OOD points sampled using importance sampling until time t and N

(o)
t is the total number

of OOD points observed till time t. Let n0 = min{u : cuN
(o)
u ≥ 173 log( 8δ )} and t0 be such that N

(o)
t0 ≥ n0. If

Algorithm 1 uses the optimization problem (P2) to find the thresholds with the upper confidence term ψ(N
(o)
t , δ/2)

given by eq. (2), then there exist constants C1, C2, C3 > 0 such that with probability at least 1− δ,
1. Controlled FPR. For all t ≥ t0, FPR(λ̂t) ≤ α.
2. Time to reach feasibility. The algorithm will find a feasible threshold, λ̂t such that F̂PR(λ̂t)+ψ(N

(o)
t ) ≤ α,

for all t ≥ max(t0, Tf ) , where, Tf = 2C1

γα2 log
(

4C2

δ log(C3

α )
)
+ 1

γ2 log(
4
δ ).

3. Time to reach η−optimality. For all t ≥ max(t0, Tη-opt), λ̂t satisfy the η-optimality condition in definition

1, when F̂PR(λ̂Tη-opt) ∈ [α− η/2, α] and Tη-opt = 8C1

γη2 log
(

4C2

δ log( 2C3

η )
)
+ 1

γ2 log(
4
δ ).



Taming False Positives in Out-Of-Distribution Detection with Human Feedback

Proof. To prove this we first obtain confidence intervals on FPR valid w.p. 1−δ/2 using Lemma 4. Then applying
Lemma 5 on these confidence intervals gives us the number of OOD samples that are sufficient to guarantee a
certain width of the confidence intervals and lastly we use Lemma 6 to bound the time point such that we observe
a certain number of OOD points till that time. We do this for the second and third points separately each time
invoking Lemma 6 with failure probability δ/4 and then union bound over them.

Controlled FPR: This follows from Lemma 4 (with probability 1− δ
2 ) and the fact the algorithm uses confidence

intervals on FPR estimate that are valid for all t ≥ t0 for the choices of λ it considers.

Time to reach feasibility: Applying Lemma 5 with µ = α gives bound on NTf
with C1 = 10(C0 + 1), C2 =

|Λ|, C3 = 5(C0 + 1). Then using Lemma 6 with k = NTf
gives us the desired Tf .

Time to reach η-optimality : We know, FPR(λ∗) = α, and it is given that F̂PR(λ̂t) ∈ [FPR(λ∗)− η/2, α]

FPR(λ̂t) ∈ [FPR(λ∗)− η/2− ψ(t, δ), α]

this means FPR(λ̂t) ≥ FPR(λ∗)− η/2− ψ(t, δ)

FPR(λ∗)− FPR(λ̂t) ≤ η/2 + ψ(t, δ)

If ψ(t, δ) ≤ η/2 we have, FPR(λ∗) − FPR(λ̂t) ≤ η. Thus applying we want to find t for which ψ(t, δ) = η/2.
Applying lemma 5 with µ = η/2 gives bound on NTf

with C1 = 40(C0 + 1), C2 = |Λ|, C3 = 10(C0 + 1). Then
using Lemma 6 with k = NTopt

gives us the desired Topt.

This concludes the proofs of the main results. Next, we present details of the procedure used to solve the
optimization problem P2 and additional experiments on synthetic and real datasets.

A.3 Additional Details of the Algorithm

We use the following algorithm (Algorithm 2) based on binary search to solve the optimization problem P2 i.e.,

find λ̂t. In addition to the best estimate of current threshold λ̂t it also returns a flag feasible that indicates
whether the procedure found a threshold satisfying the constraint in P2 or not.

Algorithm 2 SolveOptForLambda

Input: FPR threshold α , St

1: low = 1, high = Λmax−Λmin

ν , feasible = False
2: while low < high do
3: mid = ⌈(low + high)/2⌉
4: λmid = Λmin + kν
5: if F̂PR(λmid, t) + ψ(t, δ) ≤ α then
6: feasible = True
7: high = mid
8: else
9: low = mid

10: end if
11: end while
12: Output feasible, λmid

A.4 Additional Experiments and Details

In the simulations we study the effect of changing γ, using different window sizes and the case when the In-
Distribution shifts. For the real data experiments, we study the performance of the methods under different
settings with different scoring functions on CIFAR-10 and CIFAR-100 as In-Distribution datasets.
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(a) No window. (b) 5k window. (c) 10k window.

Figure 9: Changing ID distribution in synthetic data.

A.4.1 Searching for Constants in LIL-Heuristic

The theoretical LIL bound in eq. (2) has constants that can be pessimistic in practice. We get around this by
using a LIL-Heuristic bound which has the same form as in eq. (2) but with different constants in particular we
consider the form in eq. (LIL-Heuristic). We find the constants C1, C2, C3 using a simulation on estimating the
bias of a coin with different constants and picking the ones so that the observed failure probability is below 5%.

ψ̃(t, δ) = C1

√
ct

N
(o)
t

(
log log

(
C2ctN

(o)
t

)
+ log

(C3

δ

))
. (LIL-Heuristic)

Specifically, we keep C3 = 1, and run for δ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4} with varying C1 from 0.1 to 0.9 and
C2 from 1.5 to 4.75. For each choice of δ, C1, C2, we toss an unbiased coin (mean p = 0.5) for T = 10k times.
For each choice of t = 1, 2, · · · , T , we compute the empirical mean p̂ of the coin and define it as a failure if
p /∈ [p̂− ψ̃(t, δ), p̂+ ψ̃(t, δ)]. We run this process for 100 times and compute the average failure probability for
each choice of t = 1, 2, · · · , T . We then pick the constant so that the observed average probability is below 5%.
Throughout the paper, we use C1 = 0.5 and C2 = 0.75.

A.4.2 Additional Experiments on Synthetic Data

In-Distribution shift : We study the scenario when the ID distribution changes and the OOD distribution
remains fixed. In this setting the FPR for any threshold does not change since the OOD does not change but the
TPR changes due to the change in ID distribution. Thus, we expect that with this type of change our method
will not violate FPR constraint and it will gradually adapt to the threshold achieving the new TPR.

We simulate the OOD and ID scores using a mixture of two Gaussians Nid(µ = 5.5, σ = 4) and Nood(µ = −5, σ = 4)
with γ = 0.2. To simulate distribution change we change the ID distribution to Nid(µ = 5, σ = 4) at time t = 50k.
We run the methods 10 times with different random seeds. The results are shown in Figure 9. We can clearly see
that changing ID distribution(ID scores getting closer to the OOD scores) leads to a decrease in the TPR at the
threshold with 5% FPR. Since the estimation of threshold only depends on the FPR estimates and hence only on
OOD samples, changing ID distribution does not affect this estimation so the methods perform the same as in
the setting of no-distribution shift but get a reduction in the TPR at FPR 5%.

A.4.3 Additional Real OOD Datasets Experiments

We run our proposed system on real ID and OOD datasets with various OOD scoring methods. We use α = 0.05,
δ = 0.2, and importance sampling probability p = 0.2 through all the experiments. we used an Nvidia RTX
6000 graphics processing unit (GPU) to facilitate the inference process and retrieve confidence scores for various
datasets. The primary experiments conducted were executed without the GPU.

ID and OOD datasets. We use CIFAR-10 or CIFAR-100 as ID datasets. In the distribution shift setting, if
not specified, we use MNIST, SVHN, and Texture as the first mixture of OOD datasets, and TinyImageNet,
Places365, and CIFAR-10/100 as the second mixture of OOD datasets by default. We use a pre-trained Resnet-50
model for SSD method, and Resnet-18 for the rest of the methods.

Scoring functions. We use the following scoring functions,

1. ODIN. ODIN (Liang et al., 2017) takes the soft-max score from DNNs and scales the score with temperature.
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A gradient-based input perturbation is also used for better performance. We choose temperature 1000 and
input perturbation noise 0.0014, as discussed in (Liang et al., 2017). The results with this scoring function on
CIFAR-10 and CIFAR-100 ID data settings are shown in Figures 14 and 21 respectively.

2. Mahalanobis Distance (MDS). For a given point x, the Mahalanobis Distance (MDS) based score is its
MD from the closest class conditional distribution. We use the MD-based score as given in (Lee et al., 2018b)
for detecting OOD and adversarial samples. They compute the scores using representations from various layers
of DNNs and combine them to get a better scoring function. We choose input perturbation noise to be 0.0014.
The results with this scoring function on CIFAR-10 and CIFAR-100 ID data settings are shown in Figures 12
and 18 respectively.

3. Energy Score (EBO). This score was proposed in (Liu et al., 2020) and it is well aligned with the probability
density of the samples, with low energy implying ID and high energy implying OOD. We choose the temperature
parameter to be 1. The results with the EBO scoring function on CIFAR-10 and CIFAR-100 ID data settings
are shown in Figures 11 and 17 respectively.

4. SSD. It is based on computing the Mahalanobis distance in the feature space of the model trained on the
unlabeled in-distribution data using self-supervised learning. We use the official implementation of (Sehwag
et al., 2021). For CIFAR-10, we use the pre-train model they released. For CIFAR-100, We train a Resnet-50
using a contrastive self-supervised learning loss, SimCLR (Chen et al., 2020). When calculating the distance-
based OOD scores, we use one unsupervised clustering center as the only center for ID distribution for both
CIFAR-10 and CIFAR-100. The results with this scoring function on CIFAR-10 and CIFAR-100 ID data
setting are shown in Figures 15 and 20 respectively.

5. Virtual-logit Match. Virtual-logit Match (VIM) (Wang et al., 2022) combines the class-agnostic score from
feature space and ID class-dependent logits. Specifically, an additional logit representing the virtual OOD class
is generated from the residual of the feature against the principal space and then matched with the original
logits by a constant scaling. We set the dimension of the principal space D = 100. The results with the VIM
scoring function on CIFAR-10 and CIFAR-100 ID data settings are shown in Figures 13 and 19 respectively.

6. K-Nearest-Neighborhood. Unlike other methods that impose a strong distributional assumption of the
underlying feature space, the KNN-based method (Sun et al., 2022) explores the efficacy of non-parametric
nearest-neighbor distance for OOD detection. The distance between the test sample and its k-nearest training
IN sample will be used as the score for a threshold based OOD detection. We choose neighbor number k = 50.
The results with this scoring function on CIFAR-10 and CIFAR-100 ID data settings are shown in Figures 10
and 16 respectively.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 10: Results with the KNN scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

We also provide visualizations showing the distributions of the scores obtained using these scoring functions.
Please see Figures 22 to 33.
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(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 11: Results with the EBO scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 12: Results with the MDS scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 13: Results with the VIM scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 14: Results with the ODIN scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 15: Results with the SSD scores on Cifar-10 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.
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(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 16: Results with the KNN scores on Cifar-100 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 17: Results with the EBO scores on Cifar-100 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 18: Results with the MDS scores on Cifar-100 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 19: Results with the VIM scores on Cifar-100 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 20: Results with the SSD scores on Cifar-100 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.
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(a) No distribution shift, no window. (b) Distribution shift, 5k window. (c) Distribution shift, 10k window.

Figure 21: Results with the ODIN scores on Cifar-100 as ID dataset. For (b) and (c) the distribution shifts at t = 50k.
The arrow indicates the time at which the mean FPR + std. deviation over 10 runs goes below 5% for the LIL method.

Figure 22: Scores distribution for KNN with CIFAR-10 as In-Distribution.

Figure 23: Scores distribution for EBO with CIFAR-10 as In-Distribution.

Figure 24: Scores distribution for SSD with CIFAR-10 as In-Distribution.

Figure 25: Scores distribution for VIM with CIFAR-10 as In-Distribution.
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Figure 26: Scores distribution for MDS with CIFAR-10 as In-Distribution.

Figure 27: Scores distribution for ODIN with CIFAR-10 as In-Distribution.

Figure 28: Scores distribution for KNN with cifar-100 as In-Distribution.

Figure 29: Scores distribution for EBO with cifar-100 as In-Distribution.

Figure 30: Scores distribution for SSD with cifar-100 as In-Distribution.

Figure 31: Scores distribution for VIM with cifar-100 as In-Distribution.
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Figure 32: Scores distribution for MDS with cifar-100 as In-Distribution.

Figure 33: Scores distribution for ODIN with cifar-100 as In-Distribution.
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