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Abstract

Modern semi-supervised learning (SSL) methods frequently rely on pseudolabeling and
consistency regularization. The main technical challenge in pseudolabeling is identifying
the points that can reliably be labeled. Existing methods use ad-hoc or hand-crafted
notions of confidence and threshold selection functions to choose points. Though such
hand-designed strategies shine on benchmark datasets, they may not fare well in specialized
settings. To address this challenge we propose a framework to learn confidence functions and
thresholds explicitly aligned with the SSL task, obviating the need for manual designs. Our
approach formulates an optimization problem over a flexible space of confidence functions
and thresholds, allowing us to obtain optimal scoring functions—while remaining compatible
with the most popular and performant SSL techniques today. Extensive empirical evaluation
of our method shows up to 11% improvement in test accuracy over the standard baselines
while requiring substantially fewer training iterations.

1 Introduction

Obtaining high-quality labeled data is a major bottleneck in machine learning. The semi-
supervised learning (SSL) paradigm tackles this problem by training models on a small
amount of labeled data and a large quantity of unlabeled data (Chapelle et al., 2006; Zhu,
2005; van Engelen and Hoos, 2019). While SSL as a field dates back decades and includes
a wide variety of approaches, modern SSL methods frequently rely on a pair of ideas:
pseudolabeling (McLachlan, 1975; Amini et al., 2023; Rosenberg et al., 2005; Lee, 2013; Rizve
et al., 2021) and consistency regularization (Laine and Aila, 2017; Bachman et al., 2014;
Sajjadi et al., 2016; Fan et al., 2021; Kukačka et al., 2017). SSL techniques marrying these
ideas have delivered strong performance on a number of benchmark datasets.
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The main challenge with pseudolabeling is balancing accurate point selection with efficient
model training. Methods often use confidence thresholds to choose points, aiming to avoid
cascading errors while ensuring timely convergence. Numerous ad-hoc strategies exist for both
confidence calculation and threshold setting. These include maximum softmax probability
(MSP) scores for confidence as well as using fixed thresholds (Sohn et al., 2020), class-wise
and adaptive thresholds (Zhang et al., 2021; Wang et al., 2023; Xu et al., 2021; Chen et al.,
2023), and instance-dependent thresholds (Li et al., 2023) for thresholding. While such hand-
designed strategies have been tuned to produce good performance on popular benchmarks,
practitioners may struggle using them for SSL in specialized settings.

A promising solution to the pseudolabeling challenge is a framework that learns confidence
functions and thresholds explicitly aligned with the SSL task, eliminating the need for manual
experimentation. Inspired by threshold-based auto-labeling (TBAL) (Vishwakarma et al.,
2024), a data development technique, we propose a framework that adapts TBAL principles
to learn confidence functions and thresholds specifically for pseudolabeling-based SSL.

Our approach involves two aspects. First, we formulate an optimization problem over a
flexible space of confidence functions and thresholds to optimize the quantity/quality tradeoff
in pseudolabeling. The space we optimize over is broad enough to subsume many existing
manually-designed approaches. That is, we learn confidence functions and thresholds. Second,
we develop strategies to make the framework compatible with SSL approaches.

Experimentally, we couple our framework to some of the most prominent SSL techniques
in use today, including Fixmatch (Sohn et al., 2020) and Freematch (Wang et al., 2023).
We observed accuracy lifts of up to 11%, 6%, and 3% on popular benchmarks like SVHN,
CIFAR-10, and CIFAR-100 respectively, along with substantial improvements in convergence
speed. Our main contributions are,

1. We formulate the goal of maximizing pseudolabel quality and quantity as an optimiza-
tion problem over a flexible space of scoring functions and thresholds, allowing us to
characterize the optimal scoring functions.

2. From this framework we derive a practical method to learn scoring functions and thresh-
olds, optimizing for the quality and quantity of pseudolabels. This method can be flexibly
integrated with existing SSL methods that rely on pseudolabeling.

3. We provide extensive empirical evaluation and obtain strong results: the combination of
our method with baseline SSL approaches outperforms the baselines, achieving substan-
tial improvements in test accuracy, by up to 11%, and requires substantially
fewer iterations.

2 Background and Problem Setup

We begin with notation, then provide useful background and a statement of our goal.

Notation. Consider a feature space X and label space Y = {1, . . . , k} in a k-class classifica-
tion task. As usual in semi-supervised learning, we have access to a set Xu = {xu}nu

u=1 of unla-
beled data drawn from the distribution Px over X . We also have access to Dl = {(xl, yl)}Nl

l=1,
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a set of labeled data points drawn from the joint distribution Pxy, with nl ≪ Nu. Let
h : X → Y denote a model and g : X → T k ⊆ Rk be an associated confidence function giving
a score g(x) indicating the confidence of h on its prediction for any data point x. For any x
the hard label prediction is ŷ := h(x). When the prediction ŷ is used as a pseudolabel we
denote it as ỹ. In general, for a vector v ∈ Rd, v[i] denotes its i−th component. The vector
t denotes thresholds over the scores k-classes, and t[y] is its y−th entry, i.e., the score for
class y.

2.1 Pseudolabeling-based Semi-Supervised Learning

Given, as above, a large collection of unlabeled data Xu and a small set of labeled points Dl,
inductive semi-supervised learning (SSL) seeks to learn a classifier ĥssl from the model class
H. The promise of SSL is that by effectively using Xu in the learning process it can learn a
better classifier than its supervised counterpart, which learns only from Dl.

In many recent pseudolabeling-based SSL techniques, in each iteration of training, a batch of
labeled and unlabeled data is obtained, then the sum of the losses L̂ = L̂s + λuL̂u + λrL̂r is
minimized w.r.t to the model h. Here L̂s is the supervised loss, L̂u unsupervised loss, and L̂r
is (the sum of) regularization term(s). The constants λu, λr are hyperparameters controlling
the relative importance of the corresponding terms.

Supervised loss. Given a batch of labeled data Db
l the supervised loss is computed as

follows, L̂s(h|Db
l ) =

1
|Db

l |
∑

(x,y)∈Db
l
H(y, h,x). Here H(y, h,x) is the standard cross-entropy

loss between the 1-hot representation of y and the softmax output of h on input x.

Unsupervised loss and consistency regularization. For the unlabeled batch Xb
u,

pseudolabels ỹ = h(x) are computed for each x ∈ Xb
u. Then, a pseudlabeling mask

S(x, g, t | h) = 1(g(x)[ỹ] ≥ t[ỹ]), is 1 for points having confidence score bigger than
predetermined threshold corresponding to the predicted class. Recent methods, couple this
loss and consistency regularization together by doing pseudolabeling on weakly augmented
data using weak transform ω and then defining the cross-entropy loss on the strongly
augmented data using strong transformation Ω. The loss is

L̂u(h | g, t, D̃b
u) =

1

|D̃b
u|

∑
(x,ỹ)∈D̃b

u

S(ω(x), g, t|h) ·H(ỹ, h,Ω(x)).

Regularization. A regularization term (or a sum of multiple regularizers) is often included
along with the above two losses to encourage desired behavior. For instance, Freematch (Wang
et al., 2023) adds a self-adaptive class fairness regularizer to encourage diverse predictions
during the initial training phase. Similarly, a regularizer is introduced in (Mishra et al., 2024)
to encourage calibration in model’s confidence scores. Including such regularizers has been
fruitful in pseudolabeling-based SSL.

2.2 Problem Statement

The success of pseudolabeling-based SSL hinges heavily on maximizing the quality and
quantity of the pseudolabels. These are defined as follows:
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Pseudolabeling coverage (quantity). Given a set of points X, the pseudolabeling
coverage is the fraction of points that were pseudolabeled using h, g and t. This measurement
captures the quantity of pseudolabels and is defined as

P̂(g, t | h,X) :=
1

|X|
∑

(x)∈X

S(x, g, t | h) , P(g, t|h) := Ex[S(x, g, t | h)]. (1)

Pseudolabeling error (quality). This is the fraction of pseudolabeled points that received
wrong labels. This metric captures the quality of pseudolabels:

Ê(g, t | h,D) :=

∑
(x,y,ỹ)∈D S(x, g, t | h) · 1(h(x) ̸= y)∑

(x,y,ỹ)∈D S(x, g, t | h)
, (2)

E(g, t | h) = Ex[S(x, g, t | h) · 1(h(x) ̸= y)]

P(g, t|h)
. (3)

Goal. In pseudolabeling-based SSL, we want to learn a classifier ĥssl that generalizes well
on the unseen data. It is common wisdom in the literature that maximizing the quality
and quantity of the pseudolabeled points during the training procedure will lead to a better
model. Departing from the hand-crafting strategies to achieve this objective, we seek learnable
solutions to confidence scores and thresholding to achieve high coverage at low error, that
will eventually lead to a classification model ĥssl with much higher test accuracy.

3 Methodology

Our approach is to integrate learnable confidence functions and thresholds into existing
pseudolabeling-based SSL pipelines. To do so, we build on a recently-developed technique
(Vishwakarma et al., 2024) to improve the performance of threshold-based auto-labeling
(TBAL) (SGT, 2022; Vishwakarma et al., 2023; Qiu et al., 2023) systems. In order to
make such an approach compatible with SSL, we apply a simple notion—accumulating
pseudolabels—that may also be useful for other methods.

3.1 Pseudolabeling Optimization Framework

The fundamental problem in pseudolabeling is, given a classifier ĥi, to correctly identify the
points in the pool of unlabeled data Xu where the predictions of ĥi are correct. Since the
classifier is frequently undertrained during the SSL process, it may not have high accuracy.
That is, it might only be accurate in some small part of the feature space, which we hope to
identify via the confidence scores and appropriate thresholds. As discussed earlier, existing
solutions (Lee, 2013; Sohn et al., 2020; Wang et al., 2023) use maximum softmax probability
(MSP) from the model ĥi in concert with heuristics for thresholds that are either fixed or vary
dynamically based on the learning status of the model. Some recent works have observed
that MSP scores tend to be miscalibrated and proposed solutions to obtain more calibrated
scores (Mishra et al., 2024; Loh et al., 2023), which also led to performance gains.

Theoretical Framework. Instead of trying to improve calibration or heuristics for thresh-
olding, we propose to express the objective of pseudolabeling as an optimization problem
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over the space of confidence functions and thresholds. The objective is to maximize the
quantity i.e. the pseudolabeling coverage (eq. (1)) while keeping the pseudolabeling error
low (eq. (3)) i.e. have high quality.

More specifically, one approach to formalizing this optimization problem is to seek to maximize
the pseudolabeling coverage while ensuring pseudolabeling error is at most ϵ ∈ (0, 1), for
some hyperparameter ϵ. In other words, given the classifier ĥi in any iteration i of SSL, then,

g⋆i , t
∗
i ∈ argmax

g∈G,t∈Tk

P(g, t|ĥi) s.t. E(g, t|ĥi) ≤ ϵ,

are the optimal confidence functions and thresholds for pseudolabeling using ĥi’s predictions.
The quality of the pseudolabels can be controlled using ϵ. This follows the recipe for TBAL
(Vishwakarma et al., 2024), with one additional complication: for SSL, it is not clear what
value of ϵ is suitable, while in TBAL ϵ is a system-level constant provided as input.

The most attractive property of this framework is that, irrespective of the choice of ϵ, it
provides the scores and threshold that yield maximum pseudolabeling coverage at that error
level, freeing us from making arbitrary choices of confidence scores, calibration techniques,
and thresholding heuristics. Instead, we solve the optimization problem over a flexible enough
space will subsume specific strategies. Next, we discuss how to make the framework tractable.

Practical Version. The optimization problem discussed earlier involves population-level
quantities which are usually not accessible in practice. Thus we have to fall back to using
their finite sample estimates and smooth variations to make the optimization problem
tractable. We adapt the steps from (Vishwakarma et al., 2024) to obtain such a practical
version of the optimization problem. There, the authors first estimate the coverage and error
using a small amount held-out labeled data (called calibration data Dcal) curated from the
validation data. They then introduce differentiable surrogates for the 0-1 variables. Let
σ(α, z) := 1/(1 + exp(−αz)) denote the sigmoid function on R with scale parameter α ∈ R.
The surrogates are as follows,

P̃(g, t|h,Dcal) :=
1

|Dcal|
∑

(x,y,ỹ)∈Dcal

σ
(
α, g(x)[ỹ]− t[ỹ]

)
, (4)

Ẽ(g, t | h,Dcal) :=

∑
(x,y,ỹ)∈Dcal

1
(
y ̸= ỹ

)
σ
(
α, g(x)[ỹ]− t[ỹ]

)∑
(x,y,ỹ)∈Dcal

σ
(
α, g(x)[ỹ]− t[ỹ]

) . (5)

Using these surrogates the following practical optimization problem is obtained. It is also
converted into unconstrained formulation by introducing the penalty term λ ∈ R+ controlling
the relative importance of the pseudolabeling error and coverage.

ĝi, t̂i ∈ argmin
g∈G,t∈Tk

−P̃(g, t | ĥi, Dcal) + λ Ẽ(g, t | ĥi, Dcal) (P1)

We use 2-layer neural nets as a choice of G. The optimization problem (P1) is nonconvex,
but differentiable and we solve it using Stochastic Gradient Descent (SGD). See Appendix C
for more details on our choice of G and training details and hyperparameters.
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3.2 Threshold Estimation

While we can obtain both the confidence scores and thresholds by solving (P1), we propose
to adapt the threshold estimation procedure from (Vishwakarma et al., 2024) as it avoids
potential generalization issues due to learning them simultaneously from the same data Dcal

and ensures stricter control over the pseudolabeling errors. It is also decoupled from any
particular choice of scoring function, hence it can replace the thresholding procedure in the
existing SSL pipelines as well.

Our procedure is simple. It takes in a confidence function g̃i and another part of the held-out
validation data referred to as Dth. It estimates thresholds for each class separately and
estimates the pseudolabeling errors Ê(g̃i, t | h,Dth, ỹ) on the super level sets of g̃i. Here
we slightly abuse notation: instead of t ∈ T k, we use t ∈ T , to indicate the estimate of
pseudolabeling error at threshold t for class y. To obtain a threshold t̃[y] for class y, the
procedure finds the smallest t ∈ T such that Ê(g̃i, t | h,Dth, ỹ) + C1σ̂(Ê) ≤ ϵ. Here C1 is
a constant and σ̂(z) =

√
z · (1− z) and Ê is used for brevity in place of Ê(g̃i, t | h,Dth, ỹ).

Using the thresholds found using this procedure ensures pseudolabeling error remains below
(or close to) the a tolerance level ϵ.

Remarks. Departing from fixed thresholds as in (Sohn et al., 2020), prior works have proposed
adaptive and class-wise heuristic thresholding schemes based on the model’s learning status,
such as in (Djurisic et al., 2023; Zhang et al., 2021; Wang et al., 2023) and others. In
contrast, our approach is a principled way to estimate adaptive and class-wise pseudolabeling
thresholds while providing strict control over the quality of pseudolabels. This has been
used in prior works in TBAL for the problem of creating reliable datasets and is backed by
theoretical guarantees for the quality of pseudolabels produced (Vishwakarma et al., 2023).

3.3 Pseudolabeling and Accumulation

In the usual pseudolabeling-based SSL setups, the pseudolabels inferred by the model for
a mini-batch will be discarded after each iteration. Moreover, it is not guaranteed that a
previously pseudolabeled point will get pseudolabled in the current iteration as well. Given
the quality of pseudolabels is high, it is appealing to reuse the past pseudolabel for a point that
did not get pseudolabeled in the current iteration. We propose to do so for techniques where
the quality of pseudolabels is assured. We refer to this trick as “pseudolabel accumulation”.

Mathematically, if si−1, ỹi−1 are the previous mask and psuedolabels and si, ỹi−1 are the
current mask and pseudolabels for the same point, then with accumulation,

ỹi ← siỹi + (1− si)ỹi−1; and si ← si ∨ si−1.

Here ∨ is the boolean or operation and the steps are executed in the order. In words, if
a point is pseudo-labeled in the current iteration, we use that label. If not, but it was
pseudo-labeled previously, we reuse that label. If it’s never been pseudo-labeled, it remains
unlabeled.

We refer to our method as PabLO . A more formal listing of the steps is detailed in Algorithm
1, deferred to Appendix B due to space constraints.
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Table 1: Details of the dataset we use in experiments. k is the no. of classes. Nl is the no. of labeled
data points used for training the backbone model h. Nu is the no. of unlabelled data points used for
consistency regularization and pseudolabeling for all the methods. Nval is the no. of points used for
model selection in all methods. Ntest is the no. of test data points. Ncal is the number of points
used for learning the g function. Nth is the no. of points used for threshold estimation.

Dataset Backbone Model h k Nu Nval Ntest Nl Ncal Nth Augmentation

CIFAR-10 WRN-28-2 10 50K 6K 4K 250 1K 1K Weak, Strong
CIFAR-100 WRN-28-2 100 50K 6K 4K 2500 3K 3K Weak, Strong

SVHN WRN-28-2 10 604,388 15,620 10,412 250 3K 3K Weak, Strong

4 Experiments

We evaluate our method empirically to verify the following claims: C1. Our method produces
models with improved test accuracy while taking fewer iterations. C2. In certain cases,
we may wish to produce a high-quality dataset using pseudolabeling (rather than a single
high-quality model). For such scenarios, PabLO achieves much higher dataset coverage and
accuracy. Additionally, we conduct ablation studies, deferred to the Appendix C.

4.1 Experimental Setup

First, we provide a brief description of the experimental setup. Details are in Appendix C.

Methods. We use two simple base methods capturing the core ideas of pseudolabeling
(PL) and consistency regularization (CR). The first is Fixmatch (Sohn et al., 2020) which
uses fixed thresholds on MSP scores for PL along with CR. Freematch (Wang et al., 2023)
improves upon it by using adaptive, class-wise thresholds and class fairness regularization
(CFR) along with CR, and is a promising method among others using dynamic thresholds
for PL. We include their combinations with recently proposed Bayesian Model Averaging
(BAM) (Loh et al., 2023) and Margin Regularization (MR)1 (Mishra et al., 2024) to improve
calibration in SSL. We replace the pseudolabeling component by our method PabLO to obtain
Fixmatch + Ours (a combination of PabLO and CR) and Freematch + Ours (a combination
of PabLO , CR, and CFR).

Datasets. We experiment with 3 datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009) and SVHN (Netzer et al., 2011). More details are summarized in
Table 1. We use a portion of the validation data (Nval) for our method, split into Ncal, used
to calibrate the function g, and Nth, used to estimate the threshold.

Models and Training. The backbone encoder is a Wide ResNet-28-2 for all the datasets.
We use the default hyperparameters and dataset-specific settings (learning rates, batch
size, optimizers and schedulers) following previous baseline recommendations (Wang et al.,
2022). We run till 25K iterations—in contrast to the extremely large number of iterations
(220) in prior works—which may be unrealistic in practice due to resource constraints. For
confidence functions class G we use a class of 2-layer neural nets and provide it last two
layers representations from h as input, as in (Vishwakarma et al., 2023). We train it using
SGD, the hyperparameters are deferred to Appendix C. We use ϵ = 5% across all settings.

1. We assign this name for convenience.
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Table 2: Top-1 Accuracy for CIFAR-10, CIFAR-100 and SVHN averaged across 3 random seeds.
The best accuracy is bolded

Dataset CIFAR-10 CIFAR-100 SVHN

# Labels 250 2500 250

Fixmatch 88.15 ± 1.27 50.07 ± 1.12 96.54 ± 0.05
Fixmatch + MR 87.85 ± 1.10 44.75 ± 1.36 96.58 ± 0.04
Fixmatch + BaM 86.44 ± 1.47 44.58 ± 0.41 95.99 ± 0.06
Fixmatch + Ours 93.03 ± 0.44 53.17 ± 1.27 96.61 ± 0.16
Freematch 90.17 ± 0.13 57.21 ± 0.78 85.25 ± 1.70
Freematch + MR 90.17 ± 0.45 57.23 ± 1.18 84.65 ± 1.03
Freematch + BaM 88.34 ± 0.99 51.98 ± 1.74 86.28 ± 1.75
Freematch + Ours 93.08 ± 0.05 60.96 ± 0.53 96.48 ± 0.33

4.2 Results and Discussion

To verify our main claims, we compare the baselines, their combinations with our method,
and methods that induce calibrated scores in SSL. We run all methods with three random
seeds and report the mean and std. deviation of accuracy across three runs in Table 2.

C1. Test accuracy improvements. Our method maximizes pseudolabeling coverage
and accuracy, producing more accurate pseudolabels. As Table 2 shows, integrating our
method into Fixmatch and Freematch significantly improves test accuracy on CIFAR-10,
CIFAR-100, and SVHN. Notably, we see a 6% improvement on CIFAR-10 with Fixmatch, a
3% improvement on the harder CIFAR-100 with Fixmatch, and an 11% improvement on
SVHN with Freematch.

C2. Improved pseudolabeling coverage and accuracy. As our method is designed to
maximize coverage and accuracy of pseudolabels, we expect it to maintain high pseudolabeling
accuracy and coverage from the beginning. To test this, we log the pseudolabeling coverage
and accuracy in each iteration on the batch of unlabeled data used in that iteration. We
refer to these as batch pseudolabeling coverage (batch-pl-cov) and batch pseudolabeling
accuracy(batch-pl-acc). We show these for CIFAR-10 and CIFAR-100 settings in Figure 1
and 2 in the Appendix. As expected, the batch-pl-acc is high right from the beginning and it
is close to the desired level of 95% (with ϵ = 5%) throughout for CIFAR-10. However, for
CIFAR-100 possibly due to high class cardinality it drops to around 70%, This is similar to
the baselines but yields much higher coverage. Similar results hold for SVHN ( Figure 3).

5 Conclusion

We built a framework, inspired by ideas from autolabeling, that learns confidence functions
and thresholds explicitly aligned with the SSL task. This approach eliminates the need for
manual designs and hand-crafted notions of confidence, which can be limited in specialized
data settings. By formulating an optimization problem over a flexible space of confidence
functions and thresholds, we characterized optimal scoring functions. We derived our
practical method to learn the scores and evaluated it empirically, where it achieved up to 11%
improvement in test accuracy over standard baselines, while also reducing training iterations.
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Supplementary Material

We discuss related works in Appendix A formal algorithm in Appendix B. Additional
experimental results and details are in Appendix C.

Appendix A. Related Work

Semi-supervised learning (SSL). There is a rich literature on SSL spanning multiple
decades (Zhu, 2005; Chapelle et al., 2006; Singh et al., 2008; Oliver et al., 2018). This
literature comprises of a wide variety of approaches. Among these significant focus has been
placed on self-training (also called pseudolabeling) (Scudder, 1965; Blum and Mitchell, 1998;
Rosenberg et al., 2005; Lee, 2013; Oymak and Gulcu, 2020; Amini et al., 2023), generative
models Nigam et al. (2000); Adams and Ghahramani (2009); Kingma et al. (2014), graph-
based strategies (Blum and Chawla, 2001; Niyogi, 2013; Subramanya and Talukdar, 2022),
and transductive approaches (Vapnik et al., 1998; Joachims, 1999). Due to their simplicity,
pseudolabeling-based approaches have gained prominence and are widely used in application
areas such as NLP (Karamanolakis et al., 2021), speech recognition (Kahn et al., 2020), and
protein prediction (El-Manzalawy et al., 2016). Our paper focuses on recent variants of this,
discussed next.

Pseudolabeling based SSL. These methods generate artificial labels for unlabeled data
and use them for training the model. A crucial challenge here is the issue of confirmation
bias (Arazo et al., 2020) i.e., when a model starts to reinforce its own mistakes. To overcome
this and to maintain high quality of pseudolabels, confidence-based thresholding is applied.
Here only the unlabeled data where confidence is higher than a particular threshold is used
(Sohn et al., 2020). Due to the limitations of fixed thresholds, adaptive thresholds based on
the classifier’s learning status have been introduced to improve performance (Xu et al., 2021;
Zhang et al., 2021; Wang et al., 2023). Nearly all of these methods also use some form of
consistency regularization (Laine and Aila, 2017; Bachman et al., 2014; Sajjadi et al., 2016;
Fan et al., 2021; Kukačka et al., 2017) where the core idea is that the model should produce
similar prediction when presented with different versions (perturbations) of inputs and all
the present SSL methods (Xie et al., 2020; Wang et al., 2023; Sohn et al., 2020; Zhang et al.,
2021; Chen et al., 2023; Xu et al., 2021).

Confidence functions and calibration. Miscalibration (overconfidence) in neural networks
plagues various applications (Nguyen et al., 2015; Hendrycks and Gimpel, 2017; Guo et al.,
2017), including SSL. To mitigate this in general, a range of solutions have been proposed,
including training-time methods (Moon et al., 2020; Kumar et al., 2018; Hui et al., 2023;
Corbière et al., 2019; Foret et al., 2021) and post-hoc methods (Guo et al., 2017; Kumar
et al., 2019; Gupta and Ramdas, 2022; Kull et al., 2019; Zadrozny and Elkan, 2002). In
pseudolabeling based SSL, recent works (Rizve et al., 2021; Loh et al., 2023; Mishra et al.,
2024) noted the issue of miscalibration. To promote calibration, Loh et al. (2023) use
Bayesian neural nets by replacing the model’s final layer with a Bayesian layer. Rizve et al.
(2021) improve pseudolabeling with negative labels and an uncertainty-aware pseudolabel
selection technique. Mishra et al. (2024) incorporate a regularizer in pseudolabeling to
encourage calibration.
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While calibration is generally desirable, it may not be enough to solve the overconfidence issue
in SSL and other applications. Pseudolabeling requires scores that effectively distinguish
correct from incorrect predictions, aligning with the ordinal ranking criterion (Hendrycks
and Gimpel, 2017; Moon et al., 2020; Foret et al., 2021; Corbière et al., 2019). Instead of
trial-and-error with various options, we propose a flexible framework that learns confidence
functions directly optimized for pseudolabeling objectives. This builds upon principles used
in threshold-based auto-labeling (TBAL) (Vishwakarma et al., 2024), a technique for creating
labeled datasets.

Appendix B. Appendix to the Method Section

The full algorithm we use is:
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Figure 1: Left to Right: Top-1 accuracy, Batched pseudolabeling accuracy and Batched
pseudolabeling coverage of our method and baselines on CIFAR-10. We plot the values for
every 200 steps.

Figure 2: Left to Right: Top-1 accuracy, Batched pseudolabeling accuracy and Batched
pseudolabeling coverage of our method and baselines on CIFAR-100. We plot the values for
every 200 steps.

Appendix C. Additional Experiments and Details

Compute. For all our experiments, we used an NVIDIA RTX A6000 which has 48GB of
VRAM and an NVIDIA RTX 4090 with 24GB of VRAM. The runtime depends on several
factors including CPU I/O and GPU load, but on average, the baselines took around 8 hours,
while our method took around 15 hours for 25K iterations.

Hyperparameters. For the baselines, we have used their default settings. To maintain
consistency and experiment the efficiency of method, we used WRN-28-2 which is 1.4M
parameter model for all the datasets. We summarize the main hyperparameters we have
used in our method in Table 3.
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Table 3: Hyperparameters used for our method.

Method Hyperparameter Values

Learning g function

optimizer SGD
learning rate 0.01
batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

Estimating t

optimizer SGD
learning rate 0.01
batch size 64
max epoch 500
weight decay 0.01
momentum 0.9

Figure 3: Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and batched
pseudolabeling coverage of our method and various baselines on SVHN. We plots the values
for every 200 steps.

C.1 Ablation Studies

We perform ablations that give insights into the role of various parts of it. We run all the
ablation experiments on the CIFAR-10 data setting.

A1. Is pseudolabel accumulation helpful? Accumulation allows the methods to use
old pseudolabel for points that couldn’t get pseudolabeled in the current iteration. Thus
we expect accumulation could help in improving the utilization of unlabeled data and could
lead to better test accuracy in cases where the pseudolabel quality is assured to be high in
all iterations. We run two variations of our method and baselines — with accumulation and
without it and report the results in Table 4. We observe that our method has similar test
accuracy irrespective of accumulation. However, with accumulation it achieves better coverage
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Figure 4: Top-1 accuracy of our method with
different Nth and Ncal.

Figure 5: Top-1 accuracy of our method with
different error tolerance ϵ.

in early iterations as observed in Figure 6. These results are not surprising, since our method
ensures high quality of pseudolabels while maximizing coverage, it is able to eventually catch
up with the version using accumulation, leading to similar final test accuracies. On the other
hand, having accumulation hurts the performance of baseline models. This might be because
the pseudo labels generated by the baseline models are not accurate especially in the earlier
iterations, thus degrading the overall performance. Overall, we believe accumulation is going
to be helpful when we have pseudolabels with high accuracy. The plots for coverage and
accuracy over the entire run are in Figures 7, 8 in the Appendix C.

Table 4: Results on CIFAR-10 with and without
pseudolabel accumulation (Acc) for all the methods.

Method Acc—True Acc—False

Fixmatch 66.30 ± 1.68 88.15 ± 1.27

Fixmatch + MR 64.24 ± 1.93 87.85 ± 1.10

Fixmatch + BaM 84.50 ± 2.60 86.44 ± 1.47

Freematch 85.17 ± 4.74 90.17 ± 0.13

Freematch + MR 80.67 ± 2.39 90.17 ± 0.45

Freematch + BaM 88.92 ± 0.49 88.34 ± 0.99

Fixmatch + Ours 93.03 ± 0.44 93.34 ± 0.50

Freematch + Ours 93.08 ± 0.05 93.01 ± 0.24

A2. Does error tolerance affect
performance? In our method, the er-
ror tolerance parameter ϵ is a knob to
control the amount of noise in pseudola-
bels. A common wisdom in pseudola-
beling is higher noise will lead to worse
performance, which is our expectation
too. To see this, we run our method
with ϵ ∈ {0.01, 0.05, 0.1, 0.2, 0.4} in the
CIFAR-10 setting. We run each setting
with 3 random seeds and report the re-
sults in Figure 5. The results are as
expected — higher values of ϵ lead to
degraded test accuracy due to high noise
in the pseudolabels and with decreasing
ϵ leads to improved accuracy. These results also suggest that prioritizing the quality (accu-
racy) of pseudolabels over quantity is a better choice in pseudolabeling. The results are also
summarized in Table 6 and Figure 10.

A3. How much data is needed to learn the g and t? We take Ncal and Nth from the
validation data to learn the confidence function g and estimate the thresholds t respectively.
Intuitively larger values of these should lead to good g and t that can extract the expected
level of pseudolabeling coverage and accuracy from the classifier at hand. However, the task
of learning good g and estimating thresholds is not super hard and we expect it will take
fewer samples to be successful. To understand this better we run our method with Ncal and
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Figure 6: Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and Batched
pseudolabeling coverage of our method with and without pseudolabeling accumulation
enabled.

Table 5: Results on CIFAR-10 with varying Ncal and Nth.

Method Ncal = Nth = 250 Ncal = Nth = 500 Ncal = Nth = 750

Fixmatch + Ours 82.67 ± 7.08 91.74 ± 0.41 91.66 ± 2.11
Freematch + Ours 82.13 ± 7.93 92.33 ± 0.49 93.20 ± 0.53

Nth in {250, 500, 750, 1000} on CIFAR-10 setting for 3 random seeds and report the result
in Fig 4. We observe that our method can achieve desired performance with just 500 labeled
points (i.e 50 labels per class). This is interesting because we can achieve 90% accuracy by
just using 250 points (Nl) for training h and a total of 1K for learning g. Refer Table 5 and
Figure 9 for more details.

Figure 7: (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and
batched pseudolabeling coverage of Fixmatch with and without pseudolabeling accumulation
enabled on CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen the
performance of baseline methods in terms of accuracy and coverage.
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Figure 8: (A1.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and
batched pseudolabeling coverage of Freematch with and without pseudolabeling accumulation
enabled on CIFAR-10. It can be seen that enabling pseudolabeling accumulation worsen the
performance of baseline methods in terms of accuracy and coverage.

Figure 9: (A3.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and
batched pseudolabeling coverage of our method with Nth = Ncal ∈ {250, 500, 750, 1000} on
CIFAR-10. We observe that having more calibration and threshold estimation points benefits
the performance of our method.

Table 6: Results on CIFAR-10 with varying ϵ.

Method ϵ = 0.01 ϵ = 0.1 ϵ = 0.2 ϵ = 0.4

Fixmatch + Ours 94.85 ± 0.28 93.24 ± 0.18 90.52 ± 0.43 80.62 ± 1.22
Freematch + Ours 94.67 ± 0.09 92.11 ± 0.84 90.20 ± 0.65 82.23 ± 1.31
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Algorithm 1 Pseudolabeling Based SSL with PabLO
Input: Labeled data for training Dl, Validation data Dval, unlabeled pool Xu, error tolerance

ϵ, use-accumulation flag, num_iters, batch size B, replication factor µ, weak ω and
strong Ω augmentations.

Output: ĥssl, model with the best validation accuracy.
1: Ỹ ← [0]× nu, S ← [0]× nu, i← 1.
2: Dcal, Dth ← draw_randomly(Dval, Ncal, Nth)
3: while i ≤ num_iters do
4: Db

l , X
b
u, I

b
u ← draw_random_batch(µDl, µXu, B)

5: Xb
u,w, X

b
u,s ← ω(Xb

u), Ω(X
b
u)

6: if use-PabLO then
7: if i%F = 0 then
8: ĝi ← solve_opt_problem_P1(ĥi, Dcal)
9: t̂i ← estimate_thresholds(ĥi, ĝi, Dth)

10: Ỹ f ← ĥi(ω(Xu)), Sf ← 1(ĝi(ω(Xu)) ≥ t̂)
11: if use-accumulation then
12: Ỹ , S ← Sf Ỹ f + (1− Sf )Ỹ ; S ← S ∨ Sf

13: else
14: Ỹ , S ← Ỹ f , Sf

15: end if
16: end if
17: Ỹ b, Sb ← Ỹ [Ibu], S[Ibu]
18: else
19: Ỹ b, Sb ← baseline_pseudo_labeling(ĥi, Xb

u,w)
20: if use-accumulation then
21: for j ∈ Ibu do
22: Ỹ [j]← Sb[j]Ỹ b[j] + (1− Sb[j])Ỹ [j]
23: S[j]← S[j] ∨ Sb[j]
24: end for
25: end if
26: end if
27: L̂s(ĥi)← supervised_loss(h,Db

l )

28: L̂u(ĥi)← unsupervised_loss(h,Xb
u,wX

b
u,s, Ỹ

b, Sb)

29: L̂r(ĥi)← baseline_regularizers()
30: L̂(ĥi)← L̂s(ĥi) + λuL̂u(ĥi) + λrL̂r(ĥi)
31: ĥi+1 ← SGD_update(L̂(ĥi)); i← i+ 1
32: if i%eval_freq = 0 then
33: eval_acc← evaluate_model(ĥi, Dval)
34: If eval_acc is best so far then ĥssl = ĥi.
35: end if
36: end while
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Figure 10: (A2.) Left to Right: Top-1 Accuracy, Batched pseudolabeling Accuracy and
batched pseudolabeling coverage of our method with ϵ ∈ {0.01, 0.05, 0.1, 0.2, 0.4} on CIFAR-10.
Although having a looser constraint on the error encourages more coverage, the pseudolabeling
drops as a trade-off.
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