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Labeled Data Bottleneck

High-quality labeled data is
essential for safe and reliable Al

Classical
Training

Fine-tuning or
Alignment

High-Quality

Labeled Data

Collecting it is Costly,
Time Consuming & Laborious.



Data Labeling costs a lot of time and money

Crowdsourcing is widely used
to get labels
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Takes a lot of time and money
to get labels.
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A screenshot of the ImageNet database online

Re-create ImageNet using Mturk: $300,000.00

Took multiple years and a lot of human effort
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The Future Of Data . o
[.abeling: Bridging Gaps In Data labeling market projections
| $17B by 2030

Al's Supply Chain

Trevor Koverko Former Forbes Councils Member
Forbes Technology Council June, 2024
COUNCIL POST | Membership (Fee-Based)

Growth .
Increasing Demand for
The data labeling industry has witnessed remarkable growth in

o O
recent years, transitioning from a niche sector to an H I g h = q u a I Ity I a b e I e d d ata

indispensable component of the broader artificial intelligence
and machine learning landscape. According to a report by Grand
View Research, the global data labeling market is anticipated to
reach an astounding $17 billion by 2030, boasting a compound
annual growth rate (CAGR) of 28.9% from 2023 to 2030. This

surge can be attributed to the escalating demand for AI and ML

applications across diverse sectors including healthcare, finance,

retail and transportation. G rOWt h Of AI

https://www.forbes.com/councils/forbestechcouncil/2024/06/17 /the-future-of-data-
labeling-bridging-gaps-in-ais-supply-chain/

https://www.grandviewresearch.com/press-release/global-data-collection-labeling-market



Auto-labeling at lower costs and in less time

A broad set of techniques to create labeled datasets
using classifiers and human inputs.
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Weak Supervision Threshold-based Auto-labeling
&) Snorkel QWS Amazon SageMaker
[1] Litting Weak Supervision to Structured Prediction [3] Promises and Pitfalls of Threshold-based Auto-labeling
Vishwakarma, Roberts, Sala; NeurlPS 2022 Vishwakarma, Lin, Sala, Vinayak ; NeurlPS 2023 (Spotlight)

[2] Universalizing Weak Supervision [4] Pearls from Pebbles: Improved Confidence Functions for Auto-labeling

Shin, Li, Vishwakarma, Roberts, Sala; ICLR 2022 Vishwakarma, Chen, Tay, Srinath, Sala, Vinayak ; NeurlPS 2024




Auto-labeling Techniques can Help!

A broad set of techniques to create labeled datasets

using classifiers and human inputs.
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The output dataset may have labeling errors.

The impact of these errors is significant:

a. Datasets are static and have long shelf-life.

b. Multiple models are trained on the same dataset.
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Threshold-based Auto-labeling (TBAL)

Auto-labels with accuracy guarantees!

Commercial technique getting used in practice (e.g. Amazon Sagemaker Groundtruth)

Auto-labels points on which model’s confidence scores are above a threshold

o ® O0 Threshold-based Auto-labeling System
®e 040 ~ Superlevel sets on
00 04 ﬁ:g the confidence scores
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Labeled Data Auto-label points with confidence > ¢

But our understanding ‘= was limited!



Understanding Threshold-based Auto-labeling



Quality and Quantity of Auto-labeled Data

Unknown OO Auto-labeled
OO Auto-labeled True Decision Boundary % Lalkj)e(iinag riiestake
O
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7y Number of A Set of auto-labeled points
unlabeled points . .
N, Number of auto-labeled points M a Number of labeling mistakes
Quantity Quality
Auto-labeling Coverage Auto-labeling Error
D — N Good Stuff £ _ Ma Bad Stuft
N maximize this Ng  minimize this

There are Trade-offs between Coverage and Error Need to guarantee < ¢,
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Contfidence Function

Softmax Score
Multi-class setting

confidence function g : X' — AF

0.02 0.06 0.02 0.9
Confidence in predictions of the classifier 0 1 2 3
Depends on A but drop it for convenience ’g — 3 g(x) [@] — 0.9
Predicted label/class Margin Scores
g ¢ — ﬁ(X) Binary classes (Linear)
—WTX WTX
Confidence Score 0 1

g(x) (7] J=1 gx)g]=w'x
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Input

Unlabeled Data
i.i.d from space X

Auto-labeling
error tolerance

Threshold-based Auto-labeling Workflow (TBAL)

0 Initialization

. . Model Class
Create validation and Y- XY

initial training sets  h(x;w) = sign(w”

X)
O . .t ' Confidence Function
ab - o g: X —TCRT

g(x;w) = |w' x|

Training Set Validation Set

2 Find auto-labeling region,

where the model can be trusted

Trust Here
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Labeled Data

Remove points in auto-labeling region

Unlabeled Data Validation Data

1
Learn a model w using training set
Empirical Risk
| Minimizer from
3 Auto-label points in
the identified region
5

Get more human-labeled data for
training and go to step | 1




Step 2: Finding the auto-labeling region is crucial.

Quality
Auto-labeling Error
é'\ B Ma Bad Stuff Coverage
N E minimize this

Need to guarantee < ¢,

Quantity

Auto-labeling Coverage

A Ng Good Stuff T
P= N

maximize this

12

(X X X



Use validation data and confidence scores to
find the auto-labeling region.
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TBAL Workflow: Step 2

Find the Auto-labeling region

On the validation data we know where the classifier is correct and incorrect.

X |[ncorrect
D, v Correct

<=

Trust Here
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TBAL Workflow: Step 2

Find the Auto-labeling region 2. Estimate the auto-labeling error at several thresholds.
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Estimated
Auto-labeling Error

1. Order points based on the Confidence scores.

3. Pick the smallest threshold having error at most €,

Threshold t

Smallest threshold
that has error < ¢,

The hope



Factors Affecting TBAL Performance

Assume human labels are always correct (no noise).

1. Amount of validation data used for threshold estimation.

Less val. data = High variance in threshold estimation = low coverage or high error.

NeurlPS’' 23 (spotlight).

2. Confidence scores on which threshold is estimated.
Poor/overcontident scores => low coverage or high error.

NeurlPS' 24.

3. More tactors: noise, class proportions, querying strategies, model training etc.

Future...
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We studied TBAL and the role of validation data set

Promises and Pitfalls of Threshold-based Auto-labeling

Harit Vishwakarma Heguang Lin

hvishwakarma@cs.wisc.edu hglin@seas.upenn.edu
University of Wisconsin-Madison University of Pennsylvania
Frederic Sala Ramya Korlakai Vinayak
fredsala@cs.wisc.edu ramyaQece.wisc.edu
University of Wisconsin-Madison University of Wisconsin-Madison

NeurlPS, 2023 (Spotlight)

More details in the paper.

https://arxiv.org/abs/2211.12620v2

Long talk on

MLOpt Youtube Channel
https://www.youtube.com/@UWMadisonMLOPTIdeaSeminar

Thanks to AmFam and DSI

TL;DR

Theoretical and empirical results,

TBAL can produce accurately labeled dataset,

provided there is sufficient validation data.

J
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https://www.youtube.com/@UWMadisonMLOPTIdeaSeminar
https://arxiv.org/abs/2211.12620v2

Factors Affecting TBAL Performance

Assume human labels are always correct (no noise).

2. Confidence scores on which threshold is estimated.

Poor/overconfident scores = low coverage or high error. Today’s Focus

NeurlPS' 24.
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Recall the Standard Workflow for TBAL

Recap of TBAL workflow
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Standard Training Procedure (Vanilla)

classification model,

plto
\
o o
[ A P oy
Pick your favorite Neural Net o o)
(MLP, CNN, RNN, Transformer, ...) ,)\fi;f__o e’
\ J é o
L 9
b d
4 )
Minimize the Cross-Entropy Loss
on training data using SGD
\_ /
4 h
Use softmax scores for auto-labeling
\_ W,

Xewyos




Standard training procedure and softmax
scores can be bad for auto-labeling

4 )

Prone to the overconfidence problem

High scores even for incorrect predictions

\_ J

Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen Jason Yosinski Jeff Clune
University of Wyoming Cornell University University of Wyoming

anguyen8fuwyo.edu yosinskifcs.cornell.edu jeffclunefuwyo.edu

Don’t Just Blame Over-parametrization for Over-confidence:
Theoretical Analysis of Calibration in Binary Classification

YuBai' Song Mei’ Huan Wang' Caiming Xiong '

Szegedy et al. 2014; Nguyen et al. 2015; Hendricks & Gimpel
2017; Guo etal. 2017; Hein et al. 2018, Bai et al. 2021
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Experiment

Run 1 round of TBAL

Data
Model

Training data
Validation data

Error Tolerance

1 Correct ﬂ
. Incorrect

Density

025 050 075 1.00
Scores

CIFAR-10
CNN model (5.8 M parameters)
4000 points drawn randomly

1000 points drawn randomly
5%

-
Test Accuracy 55%

Coverage 2.9%

Auto-labeling Error 10.1%

\_

Kernel Density Estimate(KDE) of scores
on the remaining unlabeled data



Ad-hoc Methods to Reduce
Overcontidence may not help either

Calibration A ol
© .’
5
. . © ’
Points where score is t, the accuracy s | L
O X 4
on those points should be t R S >
Confidence
Score (s)
On Calibration of Modern Neural Networks Verified Uncertainty Calibration
Chuan Guo ™' Geoff Pleiss ' YuSun”' Kilian Q. Weinberger ' Ananya Kumar, Percy Liang, Tengyu Ma
TOP-LABEL CALIBRATION Cut your Losses with Squentropy

AND MULTICLASS-TO-BINARY REDUCTIONS

Chirag Gupta & Anditya Ramdas Like Hui '? Mikhail Belkin’?' Stephen Wright *

Platt 1999; Zadrozny & Elkan, 2001; 2002; Guo et al. 2017;
Kumar et al. 2019; Corbiére et al. (2019); Kull et al. 2019,
Mukhoti et al. 2020; Gupta & Ramdas 2021; Moon et al. 2020;
Zhu et al. 2022;: Hui et al. 2023
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Experiment

Run 1 round of TBAL + Temperature Scaling

Data
Model

Training data

Validation data

Error Tolerance
/ 1 Correct
. 1 Incorrect
o |‘ll \‘_/ ‘
o
a |
0.0 0.5 1.0

Scores

CIFAR-10
CNN model (5.8 M parameters)
4000 points drawn randomly

1000 points drawn randomly
5%

-
Test Accuracy 55%

Coverage 4.9%

Auto-labeling Error 14.1%

\_

Kernel Density Estimate(KDE) of scores
on the remaining unlabeled data



What are the right choices of scores and how do we get them?

We propose Colander, a principled method to learn
confidence scores tailored for TBAL.
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Colander boosts coverage signiticantly
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How does Colander work?

24



The Optimal Confidence Functions for TBAL

Y = h(X)
In any round, given the classifier A confidence function g : XX — AF
We want to find function g that can, Depends on A

, , but drop it for convenience
a) Give maximum coverage

b) Ensure auto-labeling error < ¢,

Address Two Challenges

Hypothetically, it we know true distribution and labels,

Coverage P(g,t | h) := Py (g(x) g] > t[g)]), Do not know the true quantities
Auto-labeli n ~ n
UtOEfrof - E(g,t | h) := Py (y #9 | 9(x)[g] > t[y]). Efficient method to solve the

optimization

25



Learn scores in practice
using empirical estimates and smooth surrogates.

Address Two Challenges

- ‘ ‘ "

Estimate using part of validation data

EHicientmethodto-selveopt
Replace 0-1 variables by sigmoids.

Solve it using gradient-based methods
SGD, Adam etc.
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Unlabeled Data

® ® Unlabeled
® ® Human-labeled

O O Auto-labeled

® 00
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Updated worktlow of TBAL

Threshold-based Auto-labeling System + Colander
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Colander
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Experiments Setup and Results

Post-hoc

Colander (Ours)

. Temperature Scaling
( Guo et al. 2017)

Histogram Binning

Train-time

. Vanilla
. CRL (Moon et al. 2020)

FMFP (zhu et al. 2022)

. Squentropy
(Hui et al. 2023)

( Gupta & Ramdas, 2021)
Scaling Binning
( Kumar et al. 2019)

Dirichlet
( Kull et al. 2019)
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With Colander, TBAL achieves significantly high

coverage while respecting the error constraint.

20 Newsgroups Tiny-ImageNet

Err() Cov(?) Err(l) Cov()
Softmax 4.6:04  52.0+1.2 7.8+0.3 36.2+0.8
TS 8.3:06  66.611.4 13.3:0.1 44.9+1.0
Dirichlet 7.8406  64.0+1.3 14.1:03  42.5:0.7
SB 7.8:0.7  63.0+2.9 13.0:05  45.2+2.0
Top-HB 8.2+0.8  66.5+22  13.7:01 459114
AdaTS 74106  64.712.6 14.0:03  46.110.7
Ours 3.3+08 82.9+04 0.6+0.2 66.5+0.7

Cross product, resulting in 20 methods.
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Results with Squentropy Train-time Method

(See paper for full results)



Takeaways

TBAL is a useful technique for creating labeled
datasets with accuracy guarantees.

Common choices of scores, (softmax scores and calibration)
can lead to poor auto-labeling performance.

We proposed Colander a principled method to learn
the optimal confidence functions for TBAL
and show that it boosts the performance significantly.

Future works

Reduce validation and calibration data requirements

Study factors such as label noise, class proportions, querying strategies,
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Pearls from Pebbles: Improved Confidence Functions for
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Harit Vishwakarma Reid (Yi) Chen Sui Jiet Tay
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University of Wisconsin-Madison, WI, USA
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