Confidence Functions for Auto-labeling

27 Nov, 2024

Harit Vishwakarma CS Ph.D. Candidate

Yi (Reid) Chen ECE Ph.D. Student

Srinath Namburi CS Masters -> GE

Sui Jiet Tay CS UG -> NYU

Prof. Fred Sala CS

Prof. Ramya K. Vinayak ECE + CS, Stats

Labeled Data Bottleneck

High-quality labeled data is essential for safe and reliable AI

Data Labeling costs a lot of time and money

Crowdsourcing is widely used to get labels

Wisdom of Crowd

Takes a lot of time and money to get labels.

IMAGENET Deng et. Al. 2009

Took multiple years and a lot of human effort

A screenshot of the ImageNet database online

Re-create ImageNet using Mturk: \$300,000.00

The Future Of Data Labeling: Bridging Gaps In AI's Supply Chain

Trevor Koverko Former Forbes Councils Member Forbes Technology Council COUNCIL POST | Membership (Fee-Based)

Growth

The data labeling industry has witnessed remarkable growth in recent years, transitioning from a niche sector to an indispensable component of the broader artificial intelligence and machine learning landscape. According to a report by Grand View Research, the global data labeling market is anticipated to reach an astounding \$17 billion by 2030, boasting a compound annual growth rate (CAGR) of 28.9% from 2023 to 2030. This surge can be attributed to the escalating demand for AI and ML applications across diverse sectors including healthcare, finance, retail and transportation.

https://www.forbes.com/councils/forbestechcouncil/2024/06/17/the-future-of-datalabeling-bridging-gaps-in-ais-supply-chain/

https://www.grandviewresearch.com/press-release/global-data-collection-labeling-market

Data labeling market projections \$17B by 2030

Increasing Demand for High-quality labeled data

4

Auto-labeling at lower costs and in less time

A broad set of techniques to create **labeled datasets** using classifiers and human inputs.

Unlabeled Data

Weak Supervision

[1] Lifting Weak Supervision to Structured Prediction

Vishwakarma, Roberts, Sala; NeurIPS 2022

[2] Universalizing Weak Supervision

Shin, Li, Vishwakarma, Roberts, Sala; ICLR 2022

Labeled Data

Threshold-based Auto-labeling

Amazon SageMaker Ground Truth

[3] Promises and Pitfalls of Threshold-based Auto-labeling

Vishwakarma, Lin, Sala, Vinayak ; NeurIPS 2023 (Spotlight)

[4] Pearls from Pebbles: Improved Confidence Functions for Auto-labeling

Vishwakarma, Chen, Tay, Srinath, Sala, Vinayak ; NeurIPS 2024

Auto-labeling Techniques can Help!

Unlabeled Data

The output dataset may have labeling errors.

- a. Datasets are static and have long shelf-life.
- b. Multiple models are trained on the same dataset.

A broad set of techniques to create labeled datasets using classifiers and human inputs.

Labeled Data

The impact of these errors is significant:

Threshold-based Auto-labeling (TBAL)

Commercial technique getting used in practice (e.g. Amazon Sagemaker Groundtruth)

Auto-labels points on which model's **confidence scores** are above a **threshold**

But our understanding is was limited!

Auto-labels with **accuracy guarantees**!

Understanding Threshold-based Auto-labeling

Quality and Quantity of Auto-labeled Data

Auto-labeled 00

Number of Nunlabeled points

Set of auto-labeled points

 N_a Number of auto-labeled points

Quantity **Auto-labeling Coverage** Good Stuff maximize this \mathcal{N}

Need to guarantee $\leq \epsilon_a$ There are Trade-offs between Coverage and Error

Unknown Auto-labeled 00 **True Decision Boundary** X Labeling mistake 0

 M_a Number of labeling mistakes

Quality **Auto-labeling Error**

$$\widehat{\mathcal{E}} = \frac{M_a}{N_a}$$

Bad Stuff minimize this

9

Confidence Function

confidence function $g: \mathcal{X} \to \Delta^k$

Confidence in predictions of the classifier

Depends on h but drop it for convenience

Predicted label/class

$$\hat{y} := h(\mathbf{x})$$

Confidence Score $g(\mathbf{x})[\hat{y}]$

Softmax Score

Multi-class setting

Margin Scores

Binary classes (Linear)

 $\hat{y} = 1$ $g(\mathbf{x})[\hat{y}] = \mathbf{w}^T \mathbf{x}$

Threshold-based Auto-labeling Workflow (TBAL)

Step 2: Finding the auto-labeling region is crucial.

Quality

Auto-labeling Error

 $\widehat{\mathcal{E}} = \frac{M_a}{N_a} \qquad \begin{array}{c} \text{Bad Stuff} \\ \text{minimize this} \end{array}$

Need to guarantee $< \epsilon_a$

Quantity

Auto-labeling Coverage

$$\hat{\mathcal{P}} = \frac{N_a}{N}$$

Good Stuff maximize this

	Coverage	Error	
Case 1	High	High	
Case 2	Low	Low	
Case 3	Low 🔶	High	
Case 4	High	Low	

Use validation data and confidence scores to find the auto-labeling region.

On the validation data we know where the classifier is correct and incorrect.

Trust Here

Factors Affecting TBAL Performance

- 1. Amount of validation data used for threshold estimation. Less val. data \implies High variance in threshold estimation \implies low coverage or high error. NeurIPS' 23 (spotlight).
- 2. Confidence scores on which threshold is estimated. Poor/overconfident scores \implies low coverage or high error. NeurIPS' 24.
- Future...

Assume human labels are always correct (no noise).

3. More factors: noise, class proportions, querying strategies, model training etc.

We studied TBAL and the role of validation data set

Promises and Pitfalls of Threshold-based Auto-labeling

Harit Vishwakarma hvishwakarma@cs.wisc.edu University of Wisconsin-Madison

Frederic Sala fredsala@cs.wisc.edu University of Wisconsin-Madison Heguang Lin hglin@seas.upenn.edu University of Pennsylvania

Ramya Korlakai Vinayak ramya@ece.wisc.edu University of Wisconsin-Madison

NeurIPS, 2023 (Spotlight)

More details in the paper.

https://arxiv.org/abs/2211.12620v2

Long talk on MLOpt Youtube Channel https://www.youtube.com/@UWMadisonMLOPTIdeaSeminar

Thanks to AmFam and DSI

TL;DR

Theoretical and empirical results,

TBAL can produce accurately labeled dataset, provided there is sufficient validation data.

Factors Affecting TBAL Performance

Assume human labels are always correct (no noise).

1. Amount of validation data used for threshold estimation. NeurIPS' 23 (spotlight).

2. Confidence scores on which threshold is estimated. Poor/overconfident scores \implies low coverage or high error. NeurIPS' 24.

3. More factors: noise, class proportions, querying strategies, model training etc. Future...

- Less val. data \implies High variance in threshold estimation \implies low coverage or high error.

Today's Focus

Recall the Standard Workflow for TBAL

Standard training procedure and softmax scores can be bad for auto-labeling

Prone to the overconfidence problem

High scores even for incorrect predictions

Szegedy et al. 2014; Nguyen et al. 2015; Hendricks & Gimpel 2017; Guo et al. 2017; Hein et al. 2018, Bai et al. 2021

Experiment

Run 1 round of TBAL

Data	CIFAR-10
Model	CNN model (5.8 M parameters)
Training data	4000 points drawn randomly
Validation data	1000 points drawn randomly
Error Tolerance	5%

Ad-hoc Methods to Reduce Overconfidence may not help either

Calibration

Points where score is t, the accuracy on those points should be t

Chuan Guo^{*1} Geoff Pleiss^{*1} Yu Sun^{*1} Kilian Q. Weinberger¹

TOP-LABEL CALIBRATION AND MULTICLASS-TO-BINARY REDUCTIONS

Chirag Gupta & Aaditya Ramdas

Like Hui¹² Mikhail Belkin²¹ Stephen Wright³

Platt 1999; Zadrozny & Elkan, 2001; 2002; Guo et al. 2017; Kumar et al. 2019; Corbiére et al. (2019); Kull et al. 2019, Mukhoti et al. 2020; Gupta & Ramdas 2021; Moon et al. 2020; Zhu et al. 2022; Hui et al. 2023

Verified Uncertainty Calibration

Ananya Kumar, Percy Liang, Tengyu Ma

Cut your Losses with Squentropy

Run 1 round of TBAL + **Temperature Scaling**

Data	CIFAR-10
Model	CNN model (5.8 M parameters)
Training data	4000 points drawn randomly
Validation data	1000 points drawn randomly
Error Tolerance	5%

Test Accuracy	55%
Coverage	4.9%
Auto-labeling Error	14.1%

Kernel Density Estimate(KDE) of scores on the remaining unlabeled data

What are the right choices of scores and how do we get them?

We propose Colander, a principled method to learn confidence scores tailored for TBAL.

Colander boosts coverage significantly

(a) Softmax

(b) Temp. Scaling

Data	CIFAR-10
Model	CNN model (5.8 M parameters
Training data	4000 points drawn randomly
Validation data	1000 points drawn randomly
Error Tolerance	5%

Run 1 round of TBAL + **Temperature Scaling** or **Colander**

How does Colander work?

The Optimal Confidence Functions for TBAL

In any round, given the classifier h

We want to find function g that can,

a) Give maximum coverage

b) Ensure auto-labeling error $\leq \epsilon_a$

Hypothetically, if we know true distribution and labels,

Coverage $\mathscr{P}(g, \mathbf{t} \mid h) := \mathbb{P}_{\mathbf{x}}(g(\mathbf{x})[\hat{y}] \ge \mathbf{t}[\hat{y}]),$

Auto-labeling $\mathscr{E}(g, \mathbf{t} \mid h) := \mathbb{P}_{\mathbf{x}}(y \neq \hat{y} \mid g(\mathbf{x})[\hat{y}] \ge \mathbf{t}[\hat{y}]).$ Error

> $\mathscr{P}(g, \mathbf{t} \mid h) \text{ s.t. } \mathscr{E}(g, \mathbf{t} \mid h) \leq \epsilon_a.$ (P1) arg max $g \in G, \mathbf{t} \in T^k$

$$g^{\star} \mathbf{t}^{\star}$$

 $\hat{y} := h(\mathbf{x})$ confidence function $g: \mathcal{X} \to \Delta^k$ Depends on hbut drop it for convenience

Address Two Challenges

Do not know the true quantities

Efficient method to solve the optimization

Learn scores in practice using empirical estimates and smooth surrogates.

- Address Two Challenges
- Do not know the true quantities
- Estimate using part of validation data
 - Efficient method to solve opt.
 - Replace 0-1 variables by sigmoids.
- Solve it using gradient-based methods SGD, Adam etc.

Updated workflow of TBAL

Experiments Setup and Results

Post-hoc

Cross product, resulting in 20 methods.

With Colander, TBAL achieves significantly high coverage while respecting the error constraint.

	20 Newsgroups		Tiny-ImageNet	
_	Err (↓)	Cov (†)	Err (↓)	Cov (†)
Softmax	4.6 ± 0.4	$52.0{\scriptstyle\pm1.2}$	$7.8{\pm}0.3$	$36.2{\scriptstyle\pm0.8}$
TS	$8.3{\pm}0.6$	$66.6{\scriptstyle\pm1.4}$	13.3 ± 0.1	$44.9{\scriptstyle\pm1.0}$
Dirichlet	$7.8{\pm}0.6$	$64.0{\pm}1.3$	14.1 ± 0.3	$42.5{\scriptstyle\pm0.7}$
SB	$7.8{\pm}0.7$	$63.0{\pm}2.9$	13.0 ± 0.5	$45.2{\pm}2.0$
Top-HB	$8.2{\pm}0.8$	66.5 ± 2.2	$13.7{\pm}0.1$	$45.9{\scriptstyle\pm1.4}$
AdaTS	$7.4{\pm}0.6$	$64.7{\pm}2.6$	14.0 ± 0.3	$46.1{\scriptstyle\pm0.7}$
Ours	3.3±0.8	82.9±0.4	0.6 ±0.2	66.5±0.7

Results with Squentropy Train-time Method

(See paper for full results)

Takeaways

Future works

- **TBAL** is a useful technique for creating labeled datasets with accuracy guarantees.
- Common choices of scores, (softmax scores and calibration) can lead to poor auto-labeling performance.
 - We proposed **Colander** a principled method to learn the optimal confidence functions for TBAL and show that it boosts the performance significantly.

- Reduce validation and calibration data requirements
- Study factors such as label noise, class proportions, querying strategies,

Pearls from Pebbles: Improved Confidence Functions for Auto-labeling

Harit Vishwakarma hvishwakarma@cs.wisc.edu

Reid (Yi) Chen reid.chen@wisc.edu

Satya Sai Srinath Namburi sgnamburi@cs.wisc.edu

Frederic Sala fredsala@cs.wisc.edu

Sui Jiet Tay sstay2@wisc.edu

Ramya Korlakai Vinayak ramya@ece.wisc.edu

University of Wisconsin-Madison, WI, USA

https://arxiv.org/pdf/2404.16188

Paper

Poster@NeurIPS

Wed 11 4:30 - 6:30 PM

Thanks to American Family Insurance

Questions and Feedback

\end{talk}